SII •

S-1410/1411系列

低消耗电流 带复位功能 看门狗定时器

www.sii-ic.com

© SII Semiconductor Corporation, 2015-2016

Rev.2.0_00

S-1410/1411系列是采用CMOS技术开发的可以3.8 μA (典型值) 的低消耗电流工作的看门狗定时器。具备复位功能和低电压 检测功能。

■ 特点

• 检测电压: 在2.0 V~5.0 V的范围内,可以0.1 V为进阶单位来选择

● 检测电压精度: ±1.5%

● 输入电压: V_{DD} = 0.9 V ~ 6.0 V

滞后幅度: 5% (典型值)消耗电流: 3.8 μA (典型值)

• 复位超时时间: 14.5 ms (典型值) (C_{POR} = 2200 pF)

可切换看门狗工作: "启用"、"禁用"看门狗工作电压范围: 2.5 V~6.0 V

• 看门狗模式切换功能*1: 超时模式、窗口模式

• 可选择看门狗输入边缘: 上升边缘、下降边缘、上升下降双边缘

• 可选择产品类型: S-1410系列 (有W / T端子产品 (输出: WDO端子))

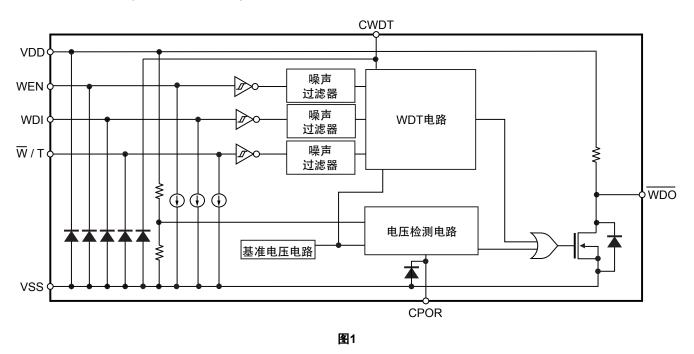
S-1411系列 (无 \overline{W} / T端子产品 (输出: \overline{RST} 端子、 \overline{WDO} 端子))

 ◆ 工作温度范围:
 Ta = -40°C ~ +105°C

• 无铅 (Sn 100%)、无卤素

*1. S-1411系列固定为窗口模式。

■ 用途


• 微机搭载机器的电源监视及系统监视

■ 封装

- TMSOP-8
- HSNT-8(2030)

■ 框图

1. S-1410系列 (有W / T端子产品)

2. S-1411系列 (无W / T端子产品)

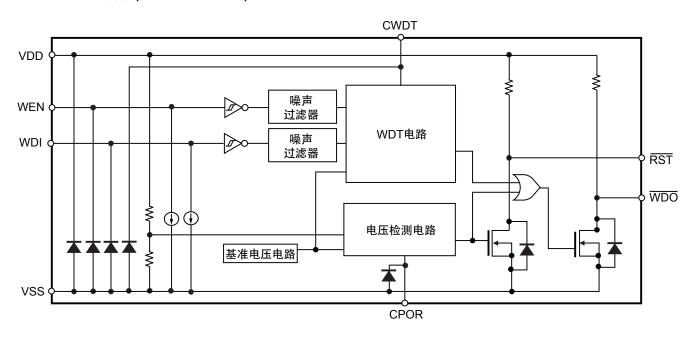
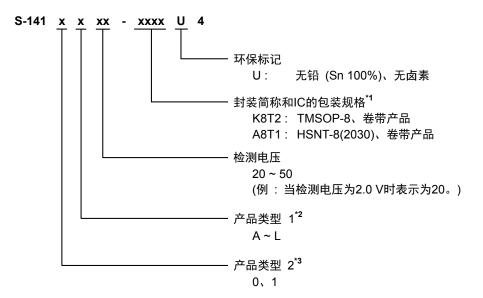



图2

■ 产品型号名的构成

关于S-1410/1411系列,用户可根据用途选择产品类型、检测电压和封装类型。关于产品名的文字含义请参阅 **"1. 产品名"**、关于产品类型请参阅 **"2. 各产品类型的功能一览"**、关于封装图面请参阅 **"3. 封装"**。

1. 产品名

- *1. 请参阅卷带图。
- *2. 请参阅 "2. 产品类型一览"。
- *3. 0: S-1410系列 (有W / T端子产品) WDO端子输出来自看门狗定时器电路和电压检测电路的信号。
 - 1: S-1411系列(无W/T端子产品) WDO端子输出来自看门狗定时器电路和电压检测电路的信号。 RST端子输出来自电压检测电路的信号。 看门狗模式固定为窗口模式。

2. 各产品类型的功能一览

表1

产品类型	WEN端子逻辑	输入边缘	输出上拉电阻
A	动态 "H"	上升边缘	有
В	动态 "H"	下降边缘	有
С	动态 "H"	上升下降双边缘	有
D	动态 "L"	上升边缘	有
E	动态 "L"	下降边缘	有
F	动态 "L"	上升下降双边缘	有
G	动态 "H"	上升边缘	无
Н	动态 "H"	下降边缘	无
I	动态 "H"	上升下降双边缘	无
J	动态 "L"	上升边缘	无
K	动态 "L"	下降边缘	无
L	动态 "L"	上升下降双边缘	无

3. 封装

表2 封装图纸号码

		-PC= 23-9CE1-9V-3-V-3		
封装名	外形尺寸图	卷带图	带卷图	焊盘图
TMSOP-8	FM008-A-P-SD	FM008-A-C-SD	FM008-A-R-SD	_
HSNT-8(2030)	PP008-A-P-SD	PP008-A-C-SD	PP008-A-R-SD	PP008-A-L-SD

■ 引脚排列图

1. TMSOP-8

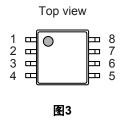


表3 S-1410系列 (有W / T端子产品)

		,
引脚号	符号	描述
1	W / T*1	看门狗模式切换端子
2	CPOR	复位超时时间调整端子
3	CWDT	看门狗时间调整端子
4	VSS	接地 (GND) 端子
5	WEN	看门狗启用端子
6	WDO	看门狗输出端子
7	WDI	看门狗输入端子
8	VDD	电压输入端子

表4 S-1411系列 (无W / T端子产品)

引脚号	符号	描述
1	RST	复位输出端子
2	CPOR	复位超时时间调整端子
3	CWDT	看门狗时间调整端子
4	VSS	接地 (GND) 端子
5	WEN	看门狗启用端子
6	WDO	看门狗输出端子
7	WDI	看门狗输入端子
8	VDD	电压输入端子

*1. W / T端子 = "H": 超时模式 W / T端子 = "L": 窗口模式

2. HSNT-8(2030)

Top view

Bottom view

图4

表5 S-1410系列 (有W / T端子产品)

引脚号	符号	描述
1	W / T*2	看门狗模式切换端子
2	CPOR	复位超时时间调整端子
3	CWDT	看门狗时间调整端子
4	VSS	接地 (GND) 端子
5	WEN	看门狗启用端子
6	WDO	看门狗输出端子
7	WDI	看门狗输入端子
8	VDD	电压输入端子

表6 S-1411系列 (无W / T端子产品)

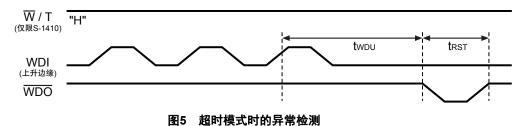
引脚号	符号	描述
1	RST	复位输出端子
2	CPOR	复位超时时间调整端子
3	CWDT	看门狗时间调整端子
4	VSS	接地 (GND) 端子
5	WEN	看门狗启用端子
6	WDO	看门狗输出端子
7	WDI	看门狗输入端子
8	VDD	电压输入端子

*1. 请将阴影部分的底面散热板与基板连接,并将电位设置为开路状态或GND。但请不要作为电极使用。

*2. 図 / T端子 = "H": 超时模式 図 / T端子 = "L": 窗口模式

■ 各端子的功能说明

详情请参阅 "■ 工作说明"。


1. W / T端子 (仅限S-1410系列)

看门狗模式切换用端子。

S-1410系列在 \overline{W} / T端子为 "H" 时变为超时模式, \overline{W} / T端子为 "L" 时变为窗口模式。工作中禁止切换模式。 \overline{W} / T端子与恒流源 (0.3 μ A (典型值)) 连接, 在内部被下拉。

1.1 超时模式 (W / T端子 = "H")

在看门狗超时时间 (twou) 内不向WDI端子进行边缘输入时, S-1410系列可检测异常, 从WDO端子输出 "L"。

1.2 窗口模式 (W / T端子 = "L")

在 t_{WDU} 内不向WDI端子进行边缘输入时,或向WDI端子进行边缘输入后若在一定期间 (缘于边缘检测的放电时间 + 1次充放电时间 (t_{WDL})) 内对WDI端子再次进行边缘输入,WDO端子输出则从 "H" 变为 "L"。

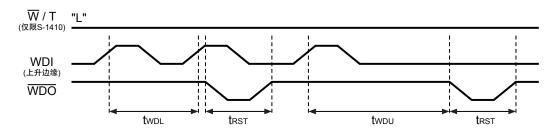


图6 窗口模式时的异常检测

2. RST端子 (仅限S-1411系列)

复位用输出端子。检测低电压时输出 "L"。 在无输出上拉电阻产品时,请一定将上拉电阻连接到RST端子

3. CPOR端子

为了生成复位超时时间 (t_{RST}) 而连接外接电容器的端子。电容器由内部定电流电路充放电,此充放电时间为 t_{RST} 被下式计算

 $t_{RST} = 6,500,000 \times C_{POR} [F] + 0.0002$

4. CWDT端子

为了生成看门狗超时时间(t_{WDL})和看门狗双脉冲检测时间(t_{WDL})而连接外接电容器的端子。电容器由内部定电流电路充放电。

twou按下式计算。

 $t_{WDU} = 50,000,000 \times C_{WDT} [F] + 0.0011$

twoL按下式计算。

$$t_{WDL} = \frac{t_{WDU}}{32}$$

5. WEN端子

"启用" 或 "禁用" 看门狗定时器的切换用端子。 苯WEN端子逻辑为对本 "H" 檢入为 "H" 时看门狗定时哭恋成 "户用"

若WEN端子逻辑为动态 "H",输入为 "H" 时看门狗定时器变成 "启用",在CWDT端子进行充放电工作。在动态为 "H" 的产品中,WEN端子与恒流源 $(0.3~\mu A~(\pm 0.3))$ 连接,在内部被下拉。

6. WDO端子

兼备复位输出和看门狗输出的端子。

在无输出上拉电阻产品时,请一定将上拉电阻连接到WDO端子。

7. WDI端子

从监视对象取得信号的输入端子。通过在适当的时机向WDI端子进行边缘输入,来确认监视对象的正常工作。WDI端子与恒流源 ($0.3~\mu A$ (典型值)) 连接,在内部被下拉。

■ 绝对最大额定值

表7

(除特殊注明以外: Ta = +25°C)

	项目	符号	绝对最大额定值	单位
VDD端子电压		V_{DD}	$V_{SS} - 0.3 \sim V_{SS} + 7.0$	V
WDI端子电压		V_{WDI}	$V_{SS} - 0.3 \sim V_{DD} + 0.3 \leq V_{SS} + 7.0$	V
WEN端子电压		V_{WEN}	$V_{SS} - 0.3 \sim V_{DD} + 0.3 \leq V_{SS} + 7.0$	V
W / T端子电压		$V_{\overline{W}/T}$	$V_{SS} - 0.3 \sim V_{DD} + 0.3 \leq V_{SS} + 7.0$	V
CPOR端子电压		V _{CPOR}	$V_{SS} - 0.3 \sim V_{DD} + 0.3 \leq V_{SS} + 7.0$	V
CWDT端子电压		V_{CWDT}	$V_{SS} - 0.3 \sim V_{DD} + 0.3 \leq V_{SS} + 7.0$	V
 RST端子电压	A/B/C/D/E/F系列	\/	$V_{SS} - 0.3 \sim V_{DD} + 0.3 \leq V_{SS} + 7.0$	V
KSI 编丁电压	G/H/I/J/K/L系列	V _{RST}	$V_{SS} - 0.3 \sim V_{SS} + 7.0$	V
 WDO端子电压	A/B/C/D/E/F系列	$V_{\overline{WDO}}$	$V_{SS} - 0.3 \sim V_{DD} + 0.3 \leq V_{SS} + 7.0$	V
WDO编于电压	G/H/I/J/K/L系列	▼ WDO	$V_{SS} - 0.3 \sim V_{SS} + 7.0$	V
工作环境温度	·	T _{opr}	−40 ~ +105	°C
保存温度	·	T _{stg}	−40 ~ +150	°C

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性的损伤。

■ 热敏电阻值

表8

项目		条件	最小值	典型值	最大值	单位	
		TMCOD	基板1	1	160	1	°C/W
结至环境热阻 ^{*1}		TMSOP-8	基板2	1	133	1	°C/W
<u> </u>	θ_{ja}	HENT 9(2020)	基板1	1	181	ı	°C/W
		HSNT-8(2030)	基板2	1	135	1	°C/W

^{*1.} 测定环境:遵循JEDEC STANDARD JESD51-2A

备注 关于容许功耗和测定基板,请参阅 "■ **封装热特性**"。

■ 电气特性

表9 (1 / 2)

(除特殊注明以外: WEN端子逻辑动态 "H" 产品, V_{DD} = 5.0 V, Ta = +25°C)

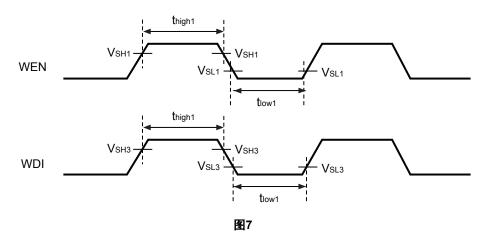

				1711) 1 2 14 7			·	测定
项目	符号	条	:件	最小值	典型值	最大值	单位	电路
检测电压 ^{*1}	-V _{DET}			$-V_{DET(S)}$	-V _{DET(S)}	-V _{DET(S)}	V	1
业然记述	-VDEI	·	_	× 0.985	-VDET(S)	× 1.015	V	ı
# 滞后幅度	V _{HYS}		_	$-V_{DET}$	$-V_{DET}$	$-V_{DET}$	V	1
	VIIIS			× 0.03	× 0.05	× 0.07	•	
工作时消耗电流	I _{SS1}	看门狗定时器工作	时	_	3.8	7.8	μΑ	2
复位超时时间	t _{RST}	C _{POR} = 2200 pF		8.7	14.5	20	ms	3
看门狗超时时间	t _{WDU}	C _{WDT} = 470 pF		15	24.6	34	ms	3
看门狗双脉冲检测时间	t _{WDL}	C _{WDT} = 470 pF		461	769	1077	μS	4
复位输出电压 "H"	V_{ROH}	仅限S-1411系列A F型	A/B/C/D/E/	V _{DD} – 1.0	_	-	V	5
复位输出电压 "L"	V_{ROL}		_	_	-	0.4	V	6
复位输出上拉电流	I _{RUP}	V _{RST} = 0 V, 仅限S-1411系列A F型	A/B/C/D/E/	-	-0.85	-0.4	μΑ	7
			V _{DD} = 1.5 V	0.6	1.1	_	mΑ	8
复位输出电流	١.	V _{DS} = 0.4 V,仅限	V _{DD} = 1.8 V	1.1	1.6	_	mA	8
麦 亚 拥山巴加 	I _{ROUT}	S-1411系列	$V_{DD} = 2.5 \text{ V}$	2.1	2.6	_	mΑ	8
			$V_{DD} = 3.0 \text{ V}$	2.8	3.3	_	mΑ	8
复位输出泄漏电流	I _{RLEAK}	V _{DS} = 6.0 V, V _{DD} = 仅限S-1411系列	= 6.0 V,	_	-	0.096	μΑ	9
看门狗输出电压 "H"	V_{WOH}	仅限A/B/C/D/	' E / F型	$V_{DD} - 1.0$	-	_	V	10
看门狗输出电压 "L"	V_{WOL}		_	_	-	0.4	V	11
看门狗输出上拉电流	I _{WUP}	V _{WDO} = 0 V, 仅限A / B / C / D /	E / F型	_	-0.85	-0.4	μΑ	12
			$V_{DD} = 1.5 V$	0.6	1.1	_	mA	13
看门狗输出电流		V _{DS} = 0.4 V	$V_{DD} = 1.8 \text{ V}$	1.1	1.6	_	mA	13
有1 79 棚山电加	I _{WOUT}	V _{DS} = 0.4 V	$V_{DD} = 2.5 V$	2.1	2.6	_	mA	13
			$V_{DD} = 3.0 \text{ V}$	2.8	3.3	_	mΑ	13
看门狗输出泄漏电流	I _{WLEAK}	V _{DS} = 6.0 V, V _{DD} = 6.0 V		_	ı	0.096	μΑ	14
输入端子电压1 "H"	V_{SH1}	WEN端子		$0.7 \times V_{DD}$	_	_	V	15
输入端子电压1 "L"	V_{SL1}	WEN端子		_	_	$0.3 \times V_{\text{DD}}$	V	15
输入端子电压2 "H"	V_{SH2}	W / T端子,仅限S-1410系列		$0.7 \times V_{DD}$	-	_	V	15
输入端子电压2 "L"	V_{SL2}	W / T端子,仅限S	W / T端子,仅限S-1410系列		_	$0.3\times V_{\text{DD}}$	V	15
输入端子电压3 "H"	V_{SH3}	WDI端子		$0.7 \times V_{DD}$		_	V	15
输入端子电压3 "L"	V_{SL3}	WDI端子		_	-	$0.3\times V_{\text{DD}}$	V	15

表9 (2 / 2)

(除特殊注明以外: WEN端子逻辑动态 "H" 产品, V_{DD} = 5.0 V, Ta = +25°C)

项目	符号	条件		最小值	典型值	最大值	单位	测定 电路
输入端子电流1 "H"		WEN端子,	A / B / C / G / H / I型	ı	0.3	1.0	μА	15
和八垧丁屯加1 日	I _{SH1}	V _{DD} = 6.0 V, 输入端子电压 = 6.0 V	D/E/F/J/ K/L型	-0.1	1	0.1	μΑ	15
输入端子电流1 "L"	I _{SL1}	WEN端子, V _{DD} = 6.0 \ 输入端子电压 = 0 V	/,	-0.1	-	0.1	μΑ	15
输入端子电流2 "H"	I _{SH2}					1.0	μΑ	15
输入端子电流2 "L"	I _{SL2}		── W / T端子,仅限S-1410系列, V _{DD} = 6.0 V,输入端子电压 = 0 V		-	0.1	μΑ	15
输入端子电流3 "H"	I _{SH3}	WDI端子, V _{DD} = 6.0 V, 输入端子	WDI端子, V _{DD} = 6.0 V, 输入端子电压 = 6.0 V		0.3	1.0	μΑ	15
输入端子电流3 "L"	I _{SL3}	WDI端子, V _{DD} = 6.0 V, 输入端子	WDI端子, V _{DD} = 6.0 V, 输入端子电压 = 0 V		ı	0.1	μΑ	15
输入脉冲幅度 "H"*2	t _{high1}	_	1.5	1	ı	μs	15	
输入脉冲幅度 "L"*2	t _{low1}	_		1.5	1	-	μs	15
看门狗输出延迟时间	t _{wout}	-			25	40	μs	3
复位输出延迟时间	t _{ROUT}	_	·	_	25	40	μs	3
输入设置时间	t _{iset}	_		1.0	_	_	μs	3

- *1. -V_{DET}:实际检测电压值、-V_{DET(S)}:设定检测电压值
- *2. 输入脉冲幅度 "H" (t_{high1})、输入脉冲幅度 "L" (t_{low1}) 如**图7**所示的定义。 对WEN端子、WDI端子,请输入 "■ **电气特性**" 规定的最小值以上的数值。

■ 测定电路

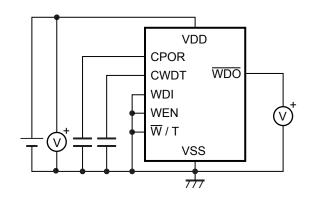


图8 测定电路1

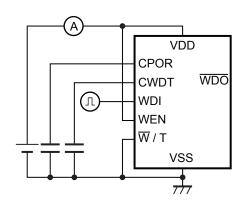


图9 测定电路2

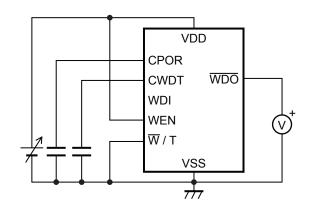


图10 测定电路3

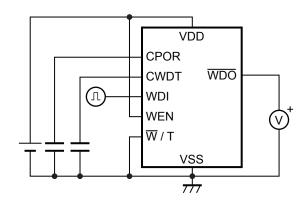
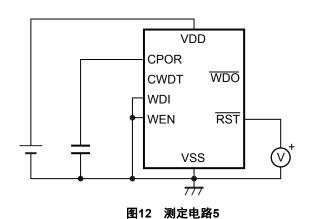
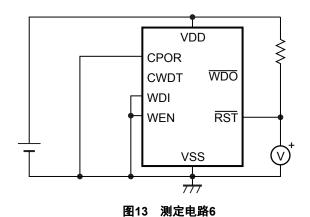
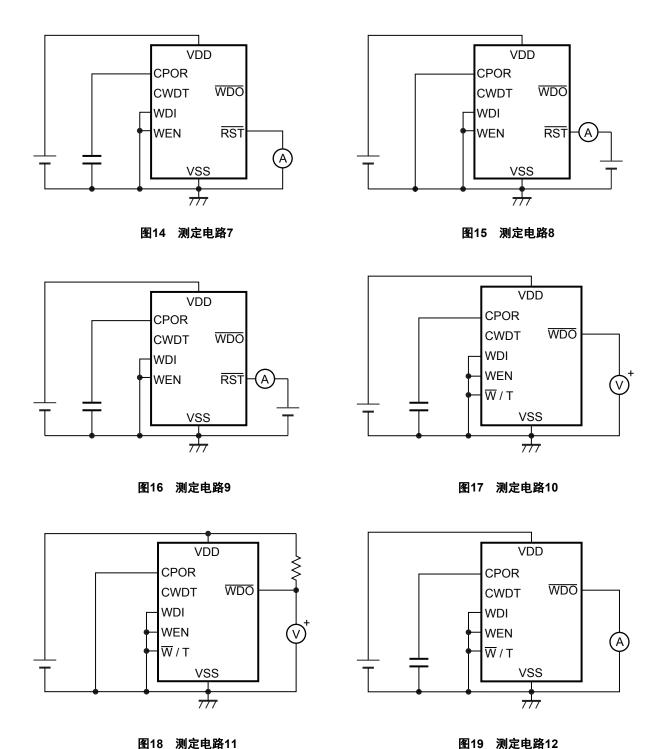
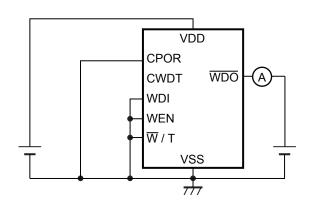






图11 测定电路4

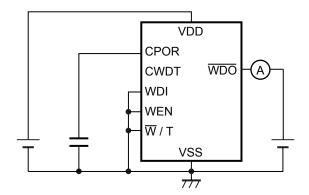


图20 测定电路13

图21 测定电路14

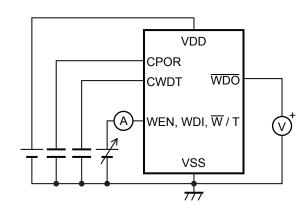
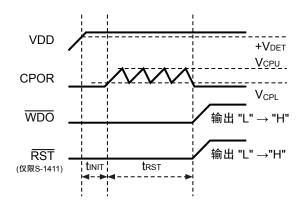



图22 测定电路15

■ 工作说明

1. 从电源接通到复位解除

若VDD端子电压超过解除电压 (+V_{DET}),S-1410/1411系列则开始初始化。 经过初始化时间 (t_{INIT}) 后开始对CPOR端子进行充放电工作,此工作进行4次后WDO端子输出和RST端子输出从 "L" 变为 "H"。

备注 V_{CPU}: CPOR充电上限阈值 (1.25 V (典型値)) V_{CPL}: CPOR充电下限阈值 (0.20 V (典型値))

图2:

 t_{INIT} 随电源上升时间而变。 t_{INIT} 与电源上升时间的关系如图24所示。

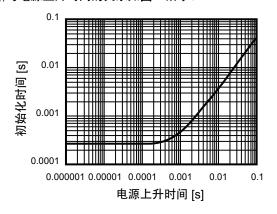
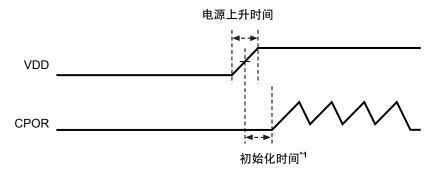



图24 初始化时间的电源上升时间依存性

*1. 初始化时间是从VDD端子电压到达V_{DD} / 2起至C_{POR}上升为止的时间。

图25 初始化时间

2. 从复位解除到对CWDT端子的充放电工作开始

对CWDT端子的充放电工作根据复位解除时WEN端子的状态而变化。

2.1 复位解除时WEN端子为 "H" 的情况下 (动态 "H")

因看门狗定时器为 "启用", S-1410/1411系列开始对CWDT端子的充放电工作。

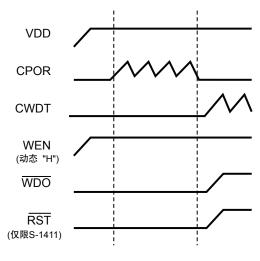


图26 WEN端子 = "H"

2.2 复位解除时WEN端子为 "L" 的情况下 (动态 "H")

对CPOR端子进行4次充放电工作后,因看门狗定时器为"禁用",S-1410/1411系列不能开始对CWDT端子的充放电工作。在此状态下如果对WEN端子的输入变为"H",S-1410/1411系列则开始对CWDT端子的充放电工作。

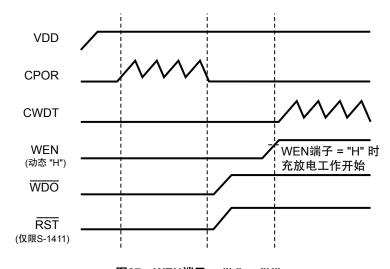
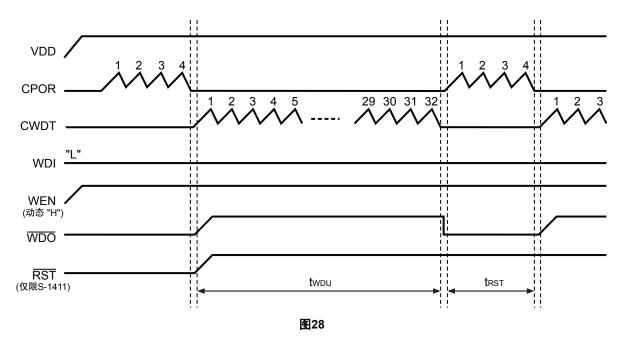
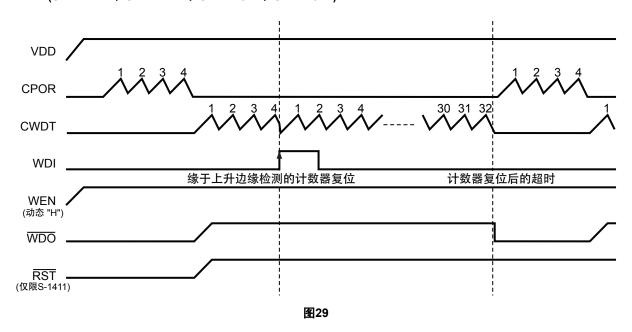
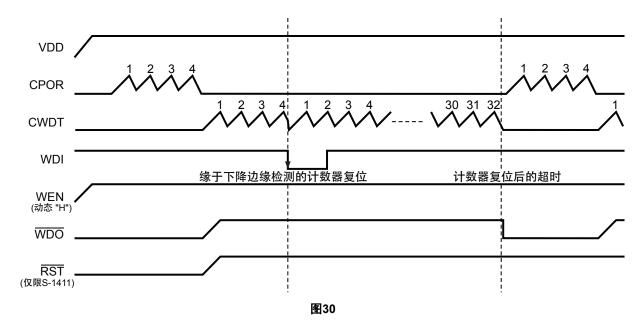



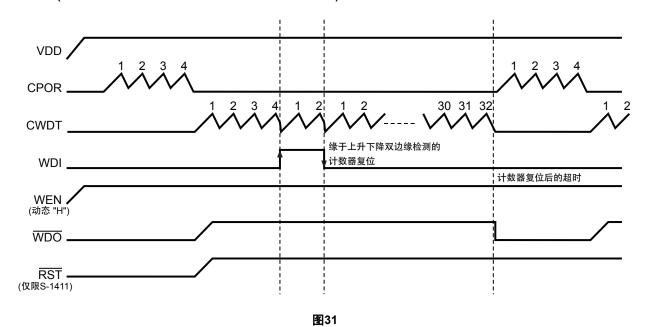
图27 WEN端子 = "L" → "H"

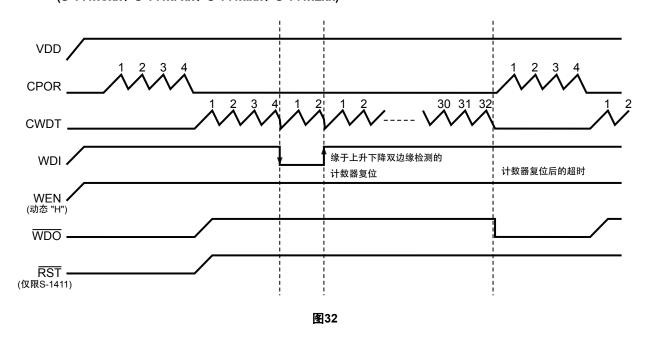
3. 看门狗超时检测


对CWDT端子进行32次充放电工作后,看门狗定时器检测超时,WDO端子输出从 "H" 变为 "L"。

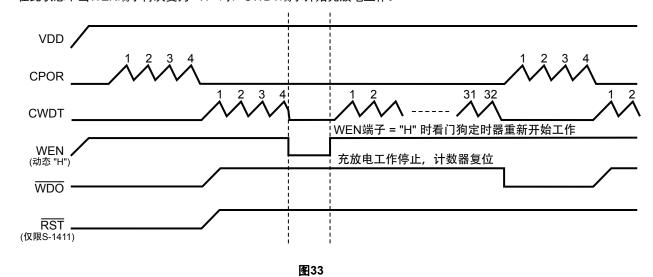

4. 缘于边缘检测的内部计数器复位

在对CWDT端子的充放电工作中当WDI端子检测出边缘时, 计算充放电次数的内部计数器被复位。在边缘检测时, CWDT端子开始放电工作, 放电工作结束后, 再一次开始充放电工作。


4.1 缘于上升边缘检测的计数器复位 (S-141xAxx、S-141xDxx、S-141xGxx、S-141xJxx)

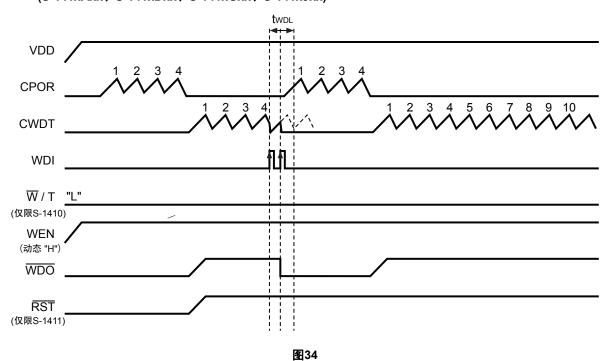

4.2 缘于下降边缘检测的计数器复位 (S-141xBxx、S-141xExx、S-141xHxx、S-141xKxx)

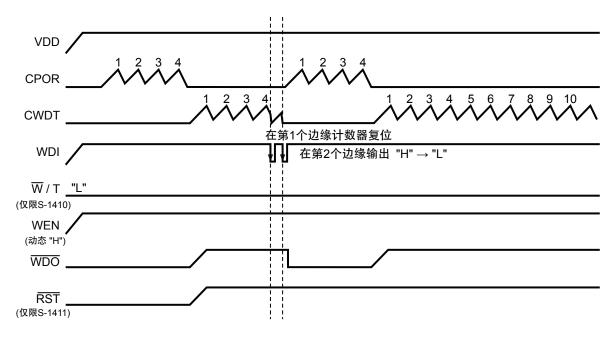
4.3 缘于上升下降双边缘检测的计数器复位1 (S-141xCxx、S-141xFxx、S-141xIxx、S-141xLxx)



4.4 缘于上升下降双边缘检测的计数器复位2 (S-141xCxx、S-141xFxx、S-141xIxx、S-141xLxx)

5. 对CWDT端子进行充放电工作中的WEN端子工作


在对CWDT端子的充放电工作中当WEN端子从 "H" 变为 "L" 时,CWDT端子进行放电工作。 另外,计算CWDT端子充放电次数的内部计数器也被复位。 在此状态下当WEN端子再次变为 "H" 时,CWDT端子开始充放电工作。


6. 看门狗双脉冲检测

S-1410/1411系列为窗口模式时,向WDI端子进行边缘输入后,若在一定期间 (缘于边缘检测的放电时间 + 1次充放电时间 (t_{WDL})) 内对WDI端子再次进行边缘输入, \overline{WDO} 端子输出则从 "H" 变为 "L"。向WDI端子进行边缘输入后,若看门狗定时器由于WEN端子的变化 ("H" \rightarrow "L" \rightarrow "H") 而变为 "禁用",则即使在上述的一定期间内再次向WDI端子进行边缘输入, \overline{WDO} 端子也继续输出 "H"。

6. 1 缘于上升边缘检测的双脉冲检测 (S-141xAxx、S-141xDxx、S-141xGxx、S-141xJxx)

6.2 缘于下降边缘检测的双脉冲检测 (S-141xBxx、S-141xExx、S-141xHxx、S-141xKxx)

6.3 缘于上升和下降双边缘检测的双脉冲检测 (S-141xCxx、S-141xFxx、S-141xIxx、S-141xLxx)

只在按上升、下降的顺序进行边缘输入时, 检测双脉冲。

6.3.1 按上升、下降的顺序对WDI端子进行边缘输入时

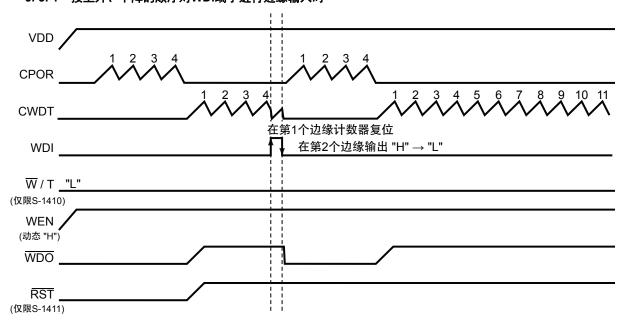


图36 双脉冲检测

6.3.2 按下降、上升的顺序对WDI端子进行边缘输入时

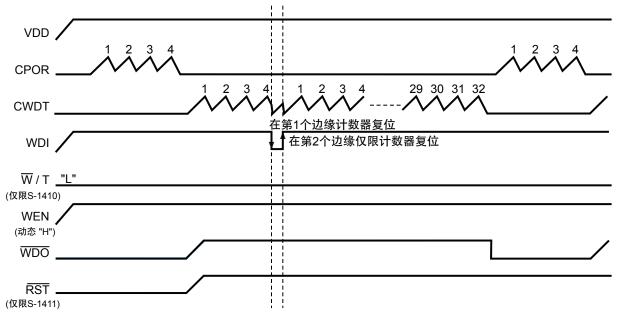
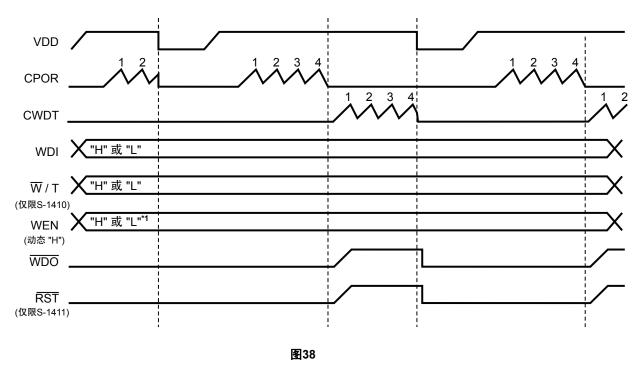
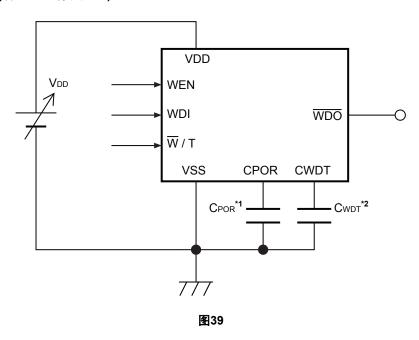



图37 双脉冲非检测

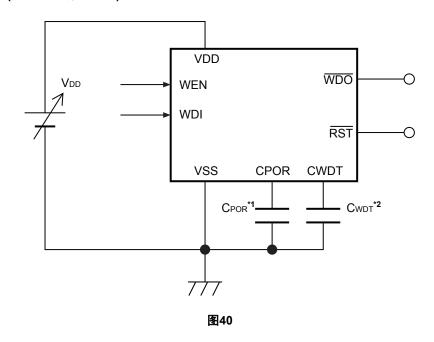
7. 低电压检测工作

电源电压低于检测电压时,电压检测电路检测低电压,WDO端子和RST端子(仅限S-1411系列)输出 "L"。此输出一直保持到CPOR端子的充放电工作进行4次后为止。

即使CPOR端子和WDT端子中的任一端子在进行充放电工作,S-1410/1411系列也可检测低电压。在这种情况下,WEN端子及 \overline{W} / \overline{T} / \overline{W} / \overline{T} / \overline{W} /


*1. WEN端子为 "禁用" 时,不进行CWDT端子的充放电工作。

8. WEN端子、WDI端子、W/T端子


WEN端子、WDI端子和 \overline{W} /T端子各备有噪声过滤器。 电源电压为5.0 V时,可除去最小200 ns脉冲幅度的噪声。

■ 标准电路

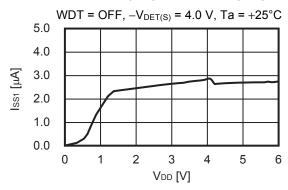
1. S-1410系列 (有W / T端子产品)

2. S-1411系列 (无W / T端子产品)

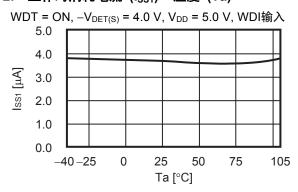
- *1. 复位输出延迟时间调整电容器 (CPOR) 直接与CPOR端子和VSS端子相连接。
- ***2.** 看门狗输出延迟时间调整电容器 (C_{WDT}) 直接与CWDT端子和VSS端子相连接。 C_{POR} 和 C_{WDT} 可使用100 pF ~ 1 μ F的电容器。

注意 上述连接图以及参数并不作为保证电路工作的依据,实际的应用电路请在进行充分的实测基础上设定参数。

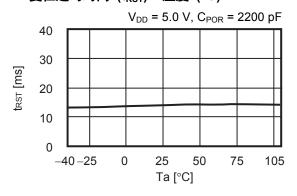
■ 注意事项

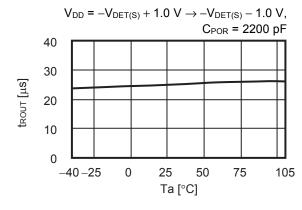

- 检测低电压时,若C_{POR}的电容太大则放电工作花费时间,到电源电压超过检测电压时为止放电工作有可能不能完成。 在此情况下,由于CPOR端子的充放电工作是在放电工作完成后进行,因而在复位超时时间 (t_{RST}) 内生成与放电工 作同样长的延迟时间。
- 请选择符合下列算式的C_{POR}和C_{WDT}的电容。若不能满足此条件,到CWDT端子开始进行下一次充放电工作时为止与CWDT端子相连的外接电容器则无法完成放电工作,因而在t_{RST}内生成与放电工作同样长的延迟时间。

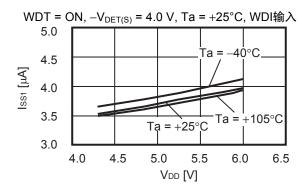
C_{WDT} / C_{POR} ≤600


- 当电源电压下降到0.9 V以下时,到电源再次上升时为止请设置20 μs以上的时间间隔。如果不能确保适当的时间,电源上升后的超时时间有可能延迟。
- 当电源电压低于检测电压的时间短时,S-1410/1411系列有可能不检测电压。在此情况下,电源上升后的超时时间有可能延迟。
- 由于S-1410/1411系列的输入端子 (WEN端子、WDI端子、 \overline{W} / T端子) 都为CMOS构造,当S-1410/1411系列工作时,请不要向其输入中间电位。
- 由于WDO端子和RST端子受外部电阻和外部电容的影响,请在实际的使用中进行充分的实测基础上使用 S-1410/1411系列。
- 本IC虽内置了防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如因其产品中对该IC的使用方法或产品的规格、或因进口国等原因,使包括本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任

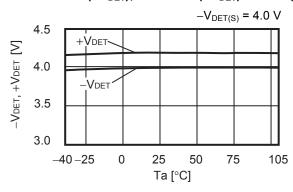
■ 各种特性数据 (典型数据)


1. 工作时消耗电流 (I_{SS1}) - 输入电压 (V_{DD})

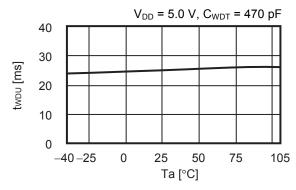

2. 工作时消耗电流 (I_{SS1}) - 温度 (Ta)

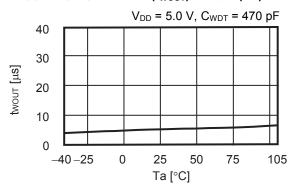


4. 复位超时时间 (t_{RST}) - 温度 (Ta)

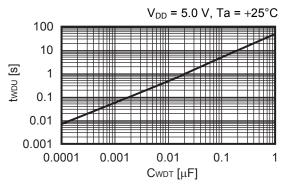


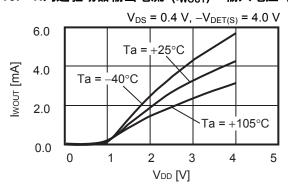
6. 复位输出延迟时间 (t_{ROUT}) - 温度 (Ta)




3. 检测电压 (-V_{DET}), 解除电压 (+V_{DET}) - 温度 (Ta)

5. 看门狗超时时间 (twou) – 温度 (Ta)


7. 看门狗输出延迟时间 (twout) - 温度 (Ta)

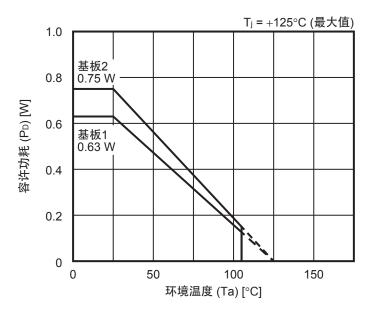
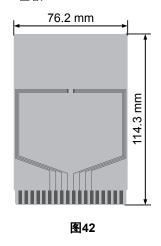

8. 复位超时时间 (t_{RST}) – C_{POR}

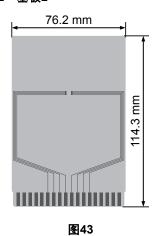
9. 看门狗超时时间 (twou) - Cwot

10. N沟道驱动器输出电流 (I_{WOUT}) - 输入电压 (V_{DD})

■ 封装热特性

1. TMSOP-8


图41 封装容许功耗 (基板安装时)

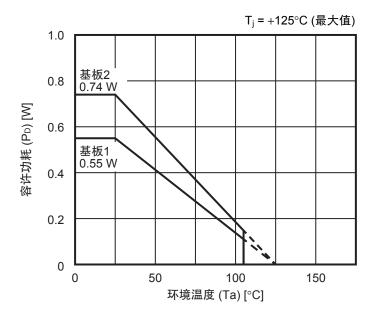
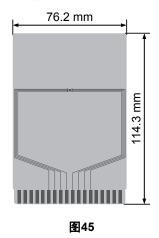
1.1 基板1

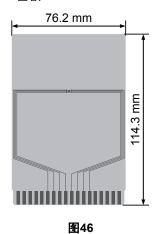
表10					
项目		规格			
热敏电阻值 (θja)		160°C/W			
尺寸		114.3 mm × 76.2 mm × t1.6 mm			
材料		FR-4			
铜箔层数		2			
	1	焊盘模式和测定用布线:t0.070 mm			
铜箔层	2	-			
3 4		-			
		74.2 mm × 74.2 mm × t0.070 mm			
热过孔		_			

1.2 基板2

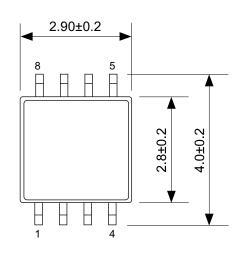
表11					
项目		规格			
热敏电阻值 (θ _{ja})		133°C/W			
尺寸		114.3 mm × 76.2 mm × t1.6 mm			
材料		FR-4			
铜箔层数		4			
	1	焊盘模式和测定用布线:t0.070 mm			
铜箔层	2	74.2 mm \times 74.2 mm \times t0.035 mm			
期泊层 3 4		74.2 mm \times 74.2 mm \times t0.035 mm			
		74.2 mm \times 74.2 mm \times t0.070 mm			
热过孔		_			

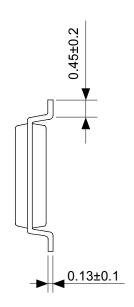
2. HSNT-8(2030)


图44 封装容许功耗 (基板安装时)

2.1 基板1




		表12
项目		规格
热敏电阻值 (θ _{ja})		181°C/W
尺寸		114.3 mm × 76.2 mm × t1.6 mm
材料		FR-4
铜箔层数		2
	1	焊盘模式和测定用布线:t0.070 mm
铜箔层	2	_
垇 润层	3	_
	4	74.2 mm × 74.2 mm × t0.070 mm
热过孔		_

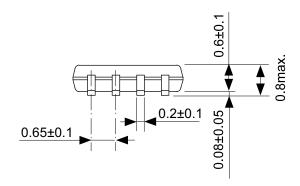
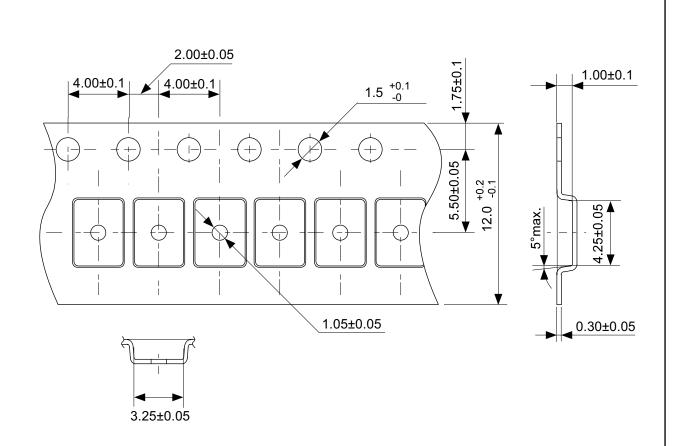
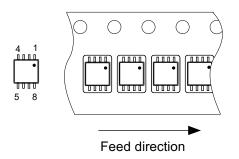
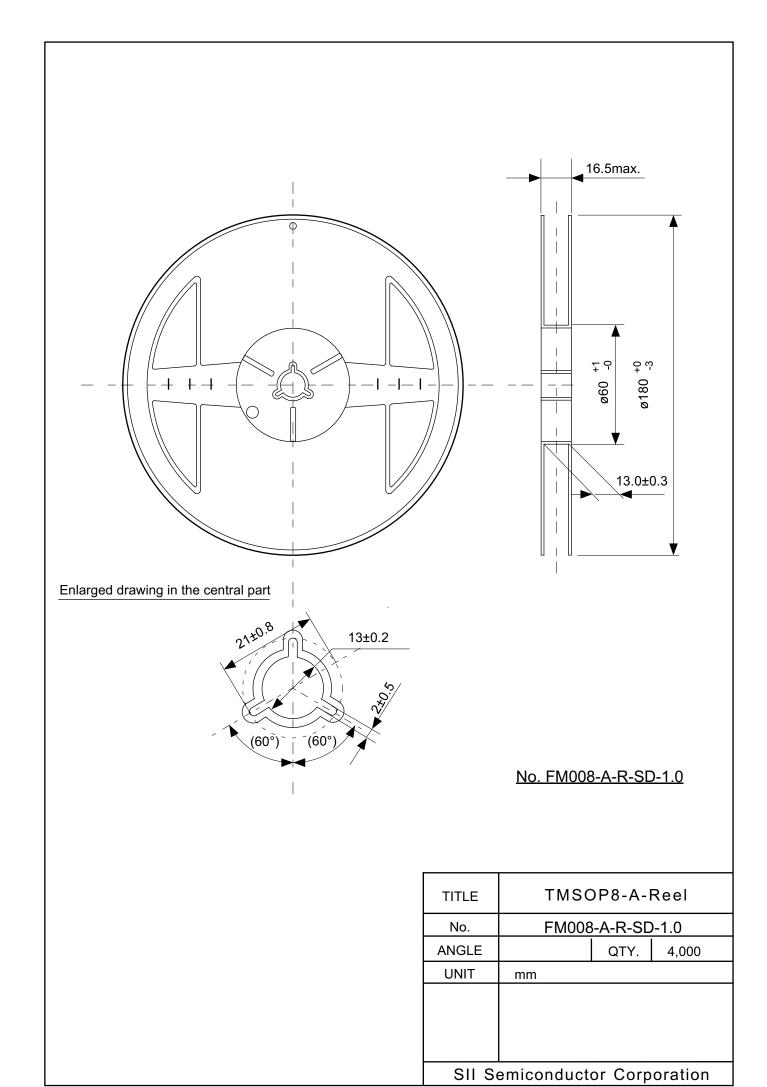

2.2 基板2

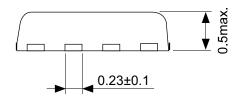
表13		
项目		规格
热敏电阻值 (θ _{ja})		135°C/W
尺寸		114.3 mm × 76.2 mm × t1.6 mm
材料		FR-4
铜箔层数		4
铜箔层	1	焊盘模式和测定用布线:t0.070 mm
	2	74.2 mm \times 74.2 mm \times t0.035 mm
	3	74.2 mm \times 74.2 mm \times t0.035 mm
	4	74.2 mm \times 74.2 mm \times t0.070 mm
热过孔		_





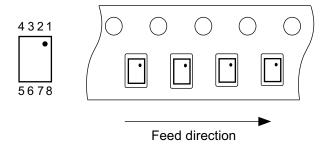
No. FM008-A-P-SD-1.2


TITLE	TMSOP8-A-PKG Dimensions		
No.	FM008-A-P-SD-1.2		
ANGLE	\$		
UNIT	mm		
SIL S	SII Semiconductor Corporation		



No. FM008-A-C-SD-2.0

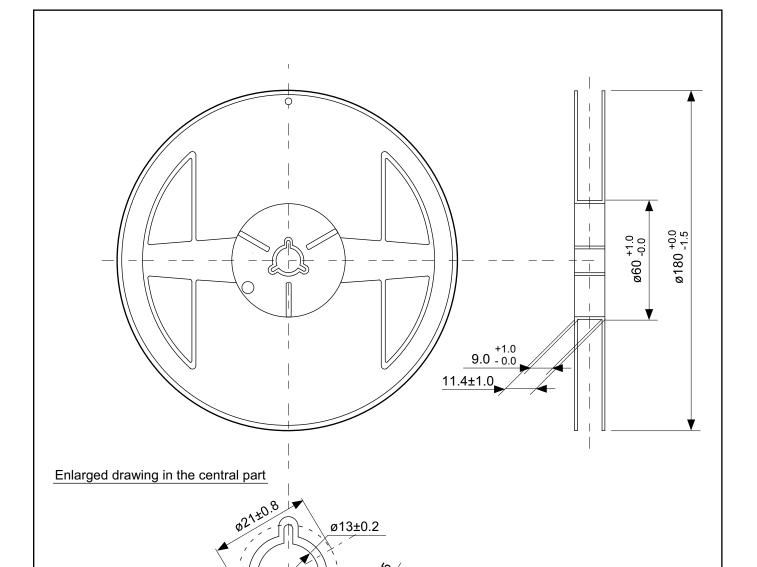
TITLE	TMSOP8-A-Carrier Tape	
No.	FM008-A-C-SD-2.0	
ANGLE		
UNIT	mm	
SII Semiconductor Corporation		



No. PP008-A-P-SD-2.0

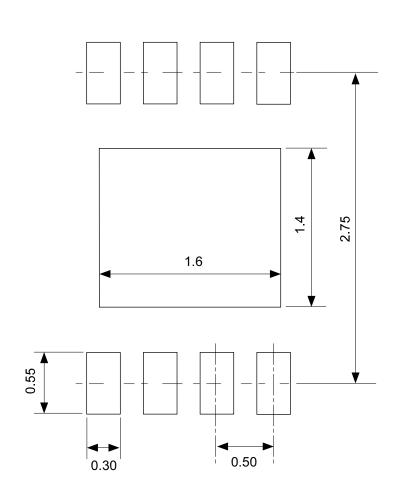
X The heat sink of back side has different electric potential depending on the product.Confirm specifications of each product.Do not use it as the function of electrode.

TITLE	DFN-8/HSNT-8-A-PKG Dimensions	
No.	PP008-A-P-SD-2.0	
ANGLE	$\bigoplus \Box$	
UNIT	mm	
SII Semiconductor Corporation		



No. PP008-A-C-SD-1.0

TITLE	DFN-8/HSNT-8-A-Carrier Tape	
No.	PP008-A-C-SD-1.0	
ANGLE		
UNIT	mm	
SII Semiconductor Corporation		


SII Semiconductor Corporation

No. PP008-A-R-SD-1.0

TITLE	DFN-8/	HSNT-8-A	\-Reel
No.	PP008-A-R-SD-1.0		
ANGLE		QTY.	5,000
UNIT	mm	•	
SII Semiconductor Corporation			

SII Semiconductor Corporation

No. PP008-A-L-SD-1.0

TITLE	DFN-8/HSNT-8-A -Land Recommendation	
No.	PP008-A-L-SD-1.0	
ANGLE		
UNIT	mm	
SII Semiconductor Corneration		

SII Semiconductor Corporation

免责事项 (使用注意事项)

- 1. 本资料记载的所有信息 (产品数据、规格、图、表、程序、算法、应用电路示例等) 是本资料公开时的最新信息,有可 能未经预告而更改。
- 2. 本资料记载的电路示例、使用方法仅供参考,并非保证批量生产的设计。 使用本资料的信息后,发生并非因产品而造成的损害,或是发生对第三方知识产权等权利侵犯情况,本公司对此概不承 担任何责任。
- 3. 因本资料记载的内容有说明错误而导致的损害,本公司对此概不承担任何责任。
- 4. 请注意在本资料记载的条件范围内使用产品,特别请注意绝对最大额定值、工作电压范围和电气特性等。 因在本资料记载的条件范围外使用产品而造成的故障和(或)事故等的损害,本公司对此概不承担任何责任。
- 5. 在使用本资料记载的产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本资料记载的产品出口海外时,请遵守外汇交易及外国贸易法等的出口法令,办理必要的相关手续。
- 7. 严禁将本资料记载的产品用于以及提供(出口)于开发大规模杀伤性武器或军事用途。对于如提供(出口)给开发、制 造、使用或储藏核武器、生物武器、化学武器及导弹,或有其他军事目的者的情况,本公司对此概不承担任何责任。
- 8. 本资料记载的产品并非是设计用于可能对人体、生命及财产造成损失的设备或装置的部件(医疗设备、防灾设备、安全 防范设备、燃料控制设备、基础设施控制设备、车辆设备、交通设备、车载设备、航空设备、太空设备及核能设备等)。 本公司指定的车载用途例外。上述用途未经本公司的书面许可不得使用。本资料所记载的产品不能用于生命维持装置、 植入人体使用的设备等直接影响人体生命的设备。考虑使用于上述用途时,请务必事先与本公司营业部门商谈。 本公司指定用途以外使用本资料记载的产品而导致的损害,本公司对此概不承担任何责任。
- 9. 半导体产品可能有一定的概率发生故障或误工作。 为了防止因本公司产品的故障或误工作而导致的人身事故、火灾事故、社会性损害等,请客户自行负责进行冗长设计、 防止火势蔓延措施、防止误工作等安全设计。并请对整个系统进行充分的评价,客户自行判断适用的可否。
- 10. 本资料记载的产品非耐放射线设计产品。请客户根据用途,在产品设计的过程中采取放射线防护措施。
- 11. 本资料记载的产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。 另外,晶元和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 12. 废弃本资料记载的产品时,请遵守使用国家和地区的法令,合理地处理。
- 13. 本资料中也包含了与本公司的著作权和专有知识有关的内容。 本资料记载的内容并非是对本公司或第三方的知识产权、其它权利的实施及使用的承诺或保证。严禁在未经本公司许可 的情况下转载或复制这些著作物的一部分,向第三方公开。
- 14. 有关本资料的详细内容,请向本公司营业部门咨询。

1.0-2016.01