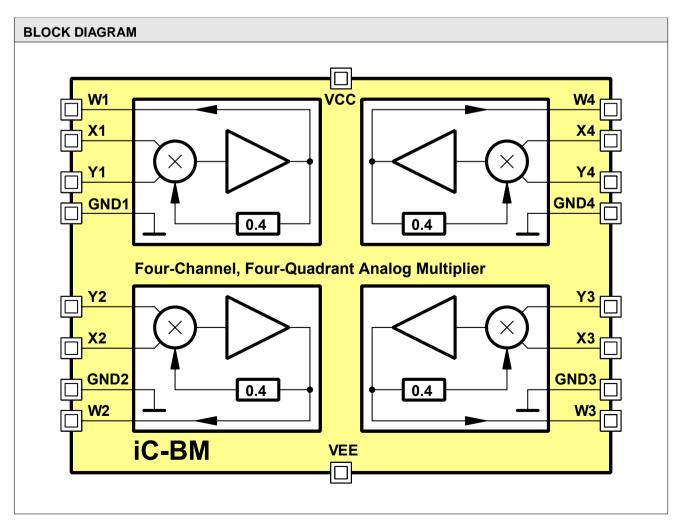


Rev B1, Page 1/7

FEATURES

MLT04 replacement
Four independent channels
Four-quadrant multiplication
Voltage output: W = 0.4 × X × Y
±2.5 V analog input range
3.5 MHz bandwidth
Low power dissipation


APPLICATIONS

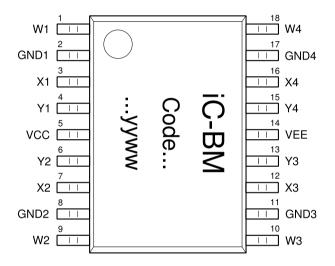
Analog computation
Squaring circuits
Modulation and demodulation
Voltage controlled amplifiers and
filters

PACKAGES

SO18W (RoHS compliant)

Copyright © 2011 iC-Haus http://www.ichaus.com

Rev B1, Page 2/7


DESCRIPTION

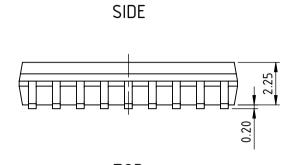
iC-BM features four analog multipliers. Each fourquadrant multiplier consists of a Gilbert cell multiplier with a 0.4 scale factor, a linearisation circuit and a unity gain output amplifier. For higher precision all internal bias currents are derived from an internal band-gap reference.

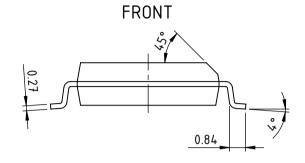
All pins are ESD protected.

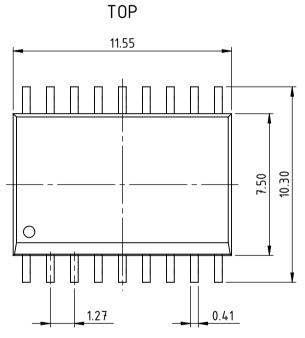
PACKAGES

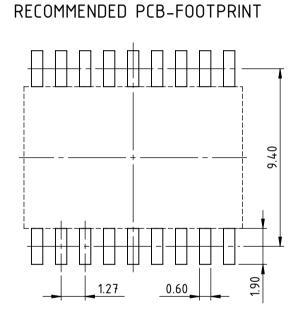
PIN CONFIGURATION SO18W

PIN FUNCTIONS


No. Name Function


1	W1	Channel 1: Analog multiplier output
2	GND1	Channel 1: Ground
3	X1	Channel 1: First input of multiplier
4	Y1	Channel 1: Second input of multiplier
5	VCC	Positive power supply +5 V
6	Y2	Channel 2: Second input of multiplier
7	X2	Channel 2: First input of multiplier
8	GND2	Channel 2: Ground
9	W2	Channel 2: Analog multiplier output
10	W3	Channel 3: Analog multiplier output
11	GND3	Channel 3: Ground
12	X3	Channel 3: First input of multiplier
13	Y3	Channel 3: Second input of multiplier
14	VEE	Negative power supply -5 V
15	Y4	Channel 4: Second input of multiplier
16	X4	Channel 4: First input of multiplier
17	GND4	Channel 4: Ground
18	W4	Channel 4: Analog multiplier output




Rev B1, Page 3/7

PACKAGE DIMENSIONS SO18W

dra_so18w-1_pack_1, 5:1

Rev B1, Page 4/7

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	VCC	Positive Power Supply			7	V
G002	VEE	Negative Power Supply		-7		V
G003	V()	Voltage at Pins X ₁₄ , Y ₁₄ and W ₁₄		-7	7	V
G004	Tj	Chip Temperature		-40	150	°C
G005	Ts	Storage Temperature		-40	150	°C

THERMAL DATA

Operating Conditions: VCC = 5 V ± 0.25 V , VEE = -5 V ± 0.25 V, Tj = -40...100 °C, R_L = 2 k Ω , if not other specified

Item	Symbol	Parameter	Conditions	Τ			Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range		-40		85	°C
T02	Rthja	Thermal Resistance Chip/Ambient			68		K/W

Rev B1, Page 5/7

ELECTRICAL CHARACTERISTICS

Operating Conditions: VCC = 5 V ± 0.25 V , VEE = -5 V ± 0.25 V, Tj = -40...100 °C, R_L = 2 k Ω , if not other specified

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Gene	al						Ш
101	V(VCC)	Positive Supply Voltage Range		4.75	5	5.25	V
102	V(VEE)	Negative Supply Voltage Range		-5.25	-5	-4.75	V
103	I(VCC)	Positive Supply Current	W ₁₄ without load resistors		15	20	mA
104	I(VEE)	Negative Supply Current	W ₁₄ without load resistors	-20	-15		mA
105	P _{DISS}	Power Dissipation	$P_{DISS} = 5 \text{ V} \times I_{CC} + 5 \text{ V} \times I_{EE}$		150	200	mW
Multip	lier Perform	ance	1 55 55				Ш
201	V(X ₁₄)os	Offset Voltage X ₁₄	$V(X_{14}) = 0 \text{ V}, V(Y_{14}) = \pm 2.5 \text{ V}$	-50		50	mV
202	V(Y ₁₄)os	Offset Voltage Y ₁₄	$V(Y_{14}) = 0 \text{ V}, V(X_{14}) = \pm 2.5 \text{ V}$	-50		50	mV
203	V(W ₁₄)os	Output Offset Voltage W ₁₄	$V(X_{14}) = 0 V, V(Y_{14}) = 0 V$	-50		50	mV
204	TCV()os	Output Offset Drift W ₁₄	$V(X_{14}) = 0 V, V(Y_{14}) = 0 V$		50		μV/°C
205	K	Fix Scale Factor	$V(X_{14}) = \pm 2.5 \text{ V}, V(Y_{14}) = \pm 2.5 \text{ V}$	0.38	0.4	0.42	1/V
206	TE(X ₁₄)	Total Error X ₁₄	$-2.5 \text{ V} \le \text{X} \le 2.5 \text{ V}, \text{ Y} = 2.5 \text{ V},$ measured as % of the $\pm 2.5 \text{ V}$ full scale	-5	±2	5	%
207	TE(Y ₁₄)	Total Error Y ₁₄	$-2.5 \text{ V} \le \text{Y} \le 2.5 \text{ V}, \text{X} = 2.5 \text{ V},$ measured as % of the $\pm 2.5 \text{ V}$ full scale	-5	±2	5	%
208	TCE(X ₁₄)	Total Error Drift X ₁₄	$V(X_{14}) = -2.5 \text{ V}, V(Y_{14}) = 2.5 \text{ V}$		0.005		%/°C
209		Total Error Drift Y ₁₄	$V(Y_{14}) = -2.5 \text{ V}, V(X_{14}) = 2.5 \text{ V}$		0.005		%/°C
210	SE()	Total Square Error X ₁₄ , Y ₁₄	$V(X_1) = V(Y_1), V(X_2) = V(Y_2), V(X_3) = V(Y_3)$ and $V(X_4) = V(Y_4)$		5		%
211	LE(X ₁₄)	Linearity Error X ₁₄	$-2.5 \text{ V} \le \text{X} \le 2.5 \text{ V}, \text{Y} = 2.5 \text{ V}$	-1	±0.2	1	%
212	LE(Y ₁₄)	Linearity Error Y ₁₄	$-2.5 \text{ V} \le \text{Y} \le 2.5 \text{ V}, \text{X} = 2.5 \text{ V}$	-1	±0.2	1	%
Dynai	nic Perform				ı		Ш
301	BW	Small Signal Bandwidth	$V(W_{14}) = 0.1 V_{rms}$		3.5		MHz
302	SR	Slew Rate	$V(W_{14}) = \pm 2.5 V$		30		V/µs
303	t _S	Settling Time	$V(W_{14}) = \Delta 2.5 V$ and 1% error band		1		μs
304	FT _{AC}	AC Feedthrough	$V(X_{14}) = 0 \text{ V}, V(Y_{14}) = 1 \text{ V}_{rms} \text{ and } f = 1 \text{ kHz}$		-65		dB
305	CT _{AC}	Crosstalk	$V(X_{14}) = V(Y_{14}) = 1 V_{rms}$, $f = 100 \text{ kHz}$, applied to adjecent channel		-90		dB
Outpu	its: W ₁₄	,	1				
401	Isc()	Short Circuit Current			±30		mA
402	THD(X ₁₄)	Total Harmonic Distortion X ₁₄	f = 1 kHz, V(Y ₁₄) = 2.5 V		0.1		%
403	THD(Y ₁₄)	Total Harmonic Distortion Y ₁₄	$f = 1 \text{ kHz}, V(X_{14}) = 2.5 \text{ V}$		0.02		%
404	PSSR()	Power Supply Sensitivity Ratio	$V(X_{14}) = V(Y_{14}) = 0 \text{ V}, \text{ VCC} = \Delta 5\% \text{ or } VEE = \Delta 5\%$			10	mV/V
405	ENA	Audio Band Noise	BW = 10 Hz to 50 kHz		70		μV _{rms}
406	EN _W	Wide Band Noise	BW = 1.9 MHz		590		μV _{rms}
407	en	Spot Noise Voltage	Noise at f = 1 kHz		0.3		μV/√Hz
408	Vmax()	Voltage Swing	VCC = +5 V, VEE = -5 V	3.0	3.3		V
409	ROUT()	Open Loop Output Resistance	VCC = +5 V, VEE = -5 V, T = +25 °C		60		Ω
Inputs	s: X ₁₄ , Y ₁₄	l · · · · ·	1			1	ш
501	VR()in	Analog Input Range	$V(GND_{14}) = 0 V$	-2.5		2.5*	V
502	I()in	Input Current	$V(X_{14}) = V(Y_{14}) = 0 V$		2.3	10	μA
503	R()in	Input Resistance			1		ΜΩ
504	C()in	Input Capacitance			3		pF

^{*} For input voltages > 3 V the output is undefined.

Rev B1, Page 6/7

iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email.

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials.

The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover-Messe).

We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to.

Rev B1, Page 7/7

ORDERING INFORMATION

Туре	Package	Order Designation
iC-BM	SO18W	iC-BM SO18W

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Tel.: +49 (61 35) 92 92-0
Am Kuemmerling 18 Fax: +49 (61 35) 92 92-192
D-55294 Bodenheim Web: http://www.ichaus.com
GERMANY E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners