

Rev A1, Page 1/29

FEATURES

PGA inputs for differential and single-ended sensor signals up to 20 kHz

Selectable adaptation to voltage or current signals Flexible signal assignment due to input multiplexers Sine/Cosine signal conditioning for offset, amplitude and phase

Separate index signal conditioning

Short-circuit-proof and reverse polarity tolerant output drivers (1 Vpp to $100\,\Omega$)

Stabilized output signal levels due to automatic gain control Signal and system monitoring with configurable alarm output Supply voltage monitoring with integrated switches for reversed-polarity-safe systems

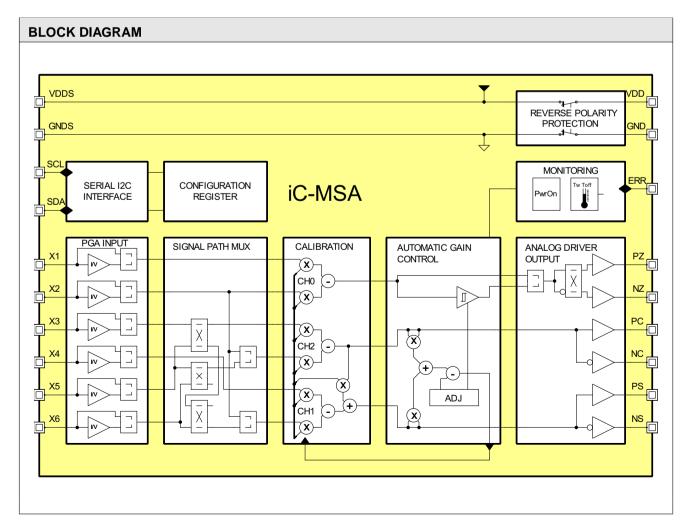
Excessive temperature protection with sensor calibration I²C multi-master interface

Supply from 4.3 to 5 V, operation within -40 °C to +115 °C Verifyable chip release code

Pin compatible with iC-MSB

APPLICATIONS

Programmable sensor interface for optical and magnetic position sensors


Linear gauges and incremental encoders

Linear scales

PACKAGES

TSSOP20-TP

Copyright © 2013 iC-Haus http://www.ichaus.com

Rev A1, Page 2/29

DESCRIPTION

iC-MSA is a signal conditioner with line drivers for sine/cosine sensors which are used to determine positions in linear and angular encoders, for example.

Programmable instrumentation amplifiers with selectable gain levels permit differential or referenced input signals; at the same time the modes of operation differentiate between high and low input impedance. This adaptation of the iC to voltage or current signals enables MR sensor bridges or photosensors to be directly connected up to the device.

The integrated signal conditioning unit allows signal amplitudes and offset voltages to be calibrated accurately and also any phase error between the sine and cosine signals to be corrected. Separate zero signal conditioning settings can be made for the gain and offset; data is then output either as an analog or a differential square-wave signal (low/high level analogous to the sine/cosine amplitude).

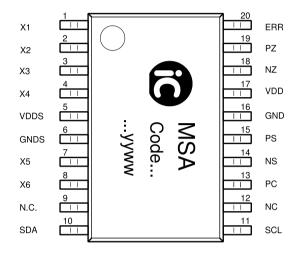
For the stabilization of the output levels a signal is generated from the conditioned and calibrated input signals which controls the gain of all channels. Temperature and aging effects can be compensated for and the set signal amplitude is maintained with absolute accuracy. At the same time the control circuitry monitors both whether the sensor is functioning correctly and whether it is properly connected; signal loss due to wire breakage, short circuiting, dirt or aging, for example, is recognized when control thresholds are reached and indicated at alarm output ERR.

iC-MSA is protected against a reversed power supply voltage; the integrated voltage switch for loads of up to 20 mA extends this protection to cover the overall system. The analog output drivers are directly cable-compatible and tolerant to false wiring; if supply voltage is connected up to these pins, the device is not destroyed.

The device configuration and calibration parameters are CRC protected and stored in an external EEP-ROM; they are loaded automatically via the I2C interface once the supply voltage has been connected up.

Rev A1, Page 3/29

CONTENTS


PACKAGING INFORMATION	4	SIGNAL PATH MULTIPLEXING	20
PIN CONFIGURATION TSSOP20-TP	4		
		SIGNAL CONDITIONING CH1, CH2	21
ABSOLUTE MAXIMUM RATINGS	5	Gain Settings CH1, CH2	21
THERMAL DATA	5	Offset Calibration CH1, CH2	22
THERMAL DATA	3	Phase Correction CH1 vs. CH2	22
ELECTRICAL CHARACTERISTICS	6		
		SIGNAL CONDITIONING CH0	23
PROGRAMMING	10	Gain Settings CH0	23
CEDIAL CONFICURATION INTERFACE		Offset Calibration CH0	23
SERIAL CONFIGURATION INTERFACE (EEPROM)	13		
Example of CRC Calculation Routine	13	AUTOMATIC SIGNAL GAIN CONTROL and	
EEPROM Selection	13	SIGNAL MONITORING	24
I ² C Slave Mode (ENSL = 1)	14	ERROR MONITORING AND ALARM OUTPUT	25
1 0 0lave Mode (E140E= 1)	17	Alarm Output: I/O pin ERR	
BIAS SOURCE AND TEMPERATURE		Excessive Temperature Warning	
SENSOR CALIBRATION	15	·	
	40	Driver Shutdown	
OPERATING MODES	16	Error Protocol	25
Calibration Op. Modes	16	DEVENSE DOLARITY PROTECTION	26
Special Device Test Functions	16	REVERSE POLARITY PROTECTION	20
Signal Filter	16	APPLICATION HINTS	27
TEST MODE	17	PLC Operation	27
INDUT CONFICURATIONS	40	Connecting MR sensor bridges for	_
INPUT CONFIGURATIONS	18	safety-related applications	27
Current Signals	18	Motor feedback encoder with iC-MSA,	28
Voltage Signals	18	iC-MSB and single FFPROM	

Rev A1, Page 4/29

PACKAGING INFORMATION

PIN CONFIGURATION TSSOP20-TP

PIN FUNCTIONS

No.	Name	Function
1	X1	Signal Input 1 (Index +)
	X2	Signal Input 2 (Index -)
3	X3	Signal Input 3
	X4	Signal Input 4
5	VDDS ¹⁾	
		Analog Supply Voltage
		(reverse-polarity-proof, load 20 mA
		max.)
6	GNDS ¹⁾	Switched Ground
		(reverse-polarity-proof)
7	X5	Signal Input 5
8	X6	Signal Input 6
	N.C.	Not Connected
10	SDA	Serial Configuration Interface,
		data line
11	SCL	Serial Configuration Interface,
		clock line
	NC	Neg. Cosine Output
	PC	Pos. Cosine Output
	NS	Neg. Sine Output
	PS	Pos. Sine Output
	GND	Ground
	VDD	+4.3 V to +5.5 V Supply Voltage
	NZ	Neg. Index Output
	PZ	Pos. Index Output
20	ERR	Error Signal (In/Out),
		Test Mode Trigger Input
	TP ²⁾	Thermal Pad (TSSOP20-TP)

¹⁾ It is advicable to connect a bypass capacitor of at least 100 nF close to the chip's analog supply terminals.

²⁾ To improve heat dissipation the *thermal pad* of the package (bottom side) should be joined to an extended copper area which must have GNDS potential.

Rev A1, Page 5/29

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	V()	Voltage at VDD, GND, PC, NC, PS, NS, PZ, NZ		-6	6	V
G002	V()	Voltage at ERR		-6	8	V
G003	V()	Pin-To-Pin Voltage between VDD, GND, PC, NC, PS, NS, PZ, NZ, ERR			6	V
G004	V()	Voltage at X1X6, SCL, SDA		-0.3	VDDS + 0.3	V
G005	I(VDD)	Current in VDD		-100	100	mA
G006	I()	Current in VDDS, GNDS		-50	50	mA
G007	I()	Current in X1X6, SCL, SDA, ERR, PC, NC, PS, NS, PZ, NZ		-20	20	mA
G008	Vd()	ESD Susceptibility at all pins	HBM 100 pF discharged through 1.5 kΩ		2	kV
G009	Ptot	Permissible Power Dissipation	TSSOP20-TP		400	mW
G010	Tj	Junction Temperature		-40	150	°C
G011	Ts	Storage Temperature Range		-40	150	°C

THERMAL DATA

VDD = 4.3...5.5 V

Item	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range	TSSOP20-TP	-40		115	°C
T02	Rthja		TSSOP20-TP surface mounted to PCB according to JEDEC 51		35		K/W

Rev A1, Page 6/29

ELECTRICAL CHARACTERISTICS

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total	Device						
001	VDD	Permissible Supply Voltage	Load current I(VDDS) < -10 mA	4.3 4.5		5.5 5.5	V V
002	I(VDD)	Supply Current in VDD	Tj = 27 °C, no load		25	50	mA
003	I(VDDS)	Permissible Load Current VDDS		-20		0	mA
004	Vcz()hi	Clamp Voltage hi at all pins				11	V
005	Vc()hi	Clamp Voltage hi at inputs SCL, SDA	Vc()hi = V() - V(VDDS), I() = 1 mA	0.4		1.5	V
006	Vc()hi	Clamp Voltage hi at inputs X1X6	Vc()hi = V() - V(VDDS), I() = 4 mA	0.3		1.2	V
007	Vc()lo	Clamp Voltage lo at all pins	I() = -4 mA	-1.2		-0.3	V
800	Irev(VDD)	Reverse-Polarity Current VDD vs. GND	V(VDD) = -5.5 V4.3 V	-1		1	mA
Signa	I Conditioni	ng, Inputs X3X6					
101	Vin()sig	Permissible Input Voltage Range	RIN12(3:0) = 0x01	0.75		VDDS - 1.5	V
102	lin()oig	Permissible Input Current Range	RIN12(3:0) = 0x09 RIN12(0) = 0, BIAS12 = 0	-300		VDDS -10	V
	lin()sig	, ,	RIN12(0) = 0, BIAS12 = 1	10		300	μA μA
103	lin()	Input Current	RIN12(3:0) = 0x01	-10		10	μA
104	Rin()	Input Resistance vs. VREFin	Tj = 27 °C; RIN12(3:0) = 0x09 RIN12(3:0) = 0x00 RIN12(3:0) = 0x02 RIN12(3:0) = 0x04 RIN12(3:0) = 0x06	16 1.1 1.6 2.2 3.2	20 1.6 2.3 3.2 4.6	24 2.1 3.0 4.2 6.0	kΩ kΩ kΩ kΩ kΩ
105	TCRin()	Temperature Coefficient Rin			0.15		%/K
106	VREFin12	Reference Voltage	RIN12(0) = 0, BIAS12 = 1 RIN12(0) = 0, BIAS12 = 0	1.35 2.25	1.5 2.5	1.65 2.75	V
107	G12	Gain Factors	GC2 = 0x80; RIN12(3:0) = 0x01, GR12 and AGCGF1 = min. RIN12(3:0) = 0x01, GR12 and AGCGF1 = max. RIN12(3:0) = 0x09, GR12 and AGCGF1 = min.		0.8 116 0.2		
	10 ""		RIN12(3:0) = 0x09, GR12 and AGCGF1 = max.		29		
108	∆Gdiff	Differential Gain Accuracy	calibration range 11 bit	-0.5		0.5	LSB
109	△Gabs Vin()diff	Absolute Gain Accuracy Recommended Differential Input Voltage	calibration range 11 bit, guaranteed monotony Vin()diff = V(CHPx) - V(CHNx), RIN12(3) = 0 RIN12(3) = 1	-1 10 40		500 2000	mVpp mVpp
111	Vin()os	Input Offset Voltage	refered to side of input	0	20		μV
112	VOScal	Offset Calibration Range	referenced to the selected source (VOS12); ORx = 00 ORx = 01 ORx = 10 ORx = 11		±100 ±200 ±600 ±1200		%V() %V() %V() %V()
113	△VOSdiff	Differential Linearity Error of Offset Correction	calibration range 11 bit	-0.5		0.5	LSB
114	∆VOSint	Integral Linearity Error of Offset Correction	calibration range 11 bit	-1		1	LSB
115	PHIkorr	Phase Error Calibration Range	CH1 versus CH2		±10.4		٥
116	∆PHIdiff	Differential Linearity Error of Phase Calibration	calibration range 10 bit	-0.5		0.5	LSB
117	∆PHlint	Integral Linearity Error of Phase Calibration	calibration range 10 bit	-1		1	LSB
119	fin()max	Permissible Input Frequency		20			kHz

Rev A1, Page 7/29

ELECTRICAL CHARACTERISTICS

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
120	fhc()	Input Amplifier Cut-off Frequency (-3dB)		100			kHz
Signa	I Condition	ing, Inputs X1, X2					
201	Vin()sig	Permissible Input Voltage Range	RIN0(3:0) = 0x01	0.75		VDDS - 1.5	V
			RIN0(3:0) = 0x09	0		VDDS	V
202	lin()sig	Permissible Input Current Range	RINO(0) = 0, BIAS0 = 0 RINO(0) = 0, BIAS0 = 1	-300 10		-10 300	μA μA
203	lin()	Input Current	RIN0(3:0) = 0x01	-10		10	μA
204	Vout(X2)	Output Voltage at X2	BIASEX = 10, I(X2) = 0, referenced to VRE- Fin12	95	100	105	%
205	Vin(X2)	Permissible Input Voltage at	BIASEX = 11	0.5		VDDS - 2	V
206	Rin(X2)	Input Resistance at X2	BIASEX = 11, RIN0(3:0) = 0x01, RIN12(3:0) = 0x01	20	28	35	kΩ
207	Rin()	Input Resistance vs. VREFin	Tj = 27 °C; RINO(3:0) = 0x09 RINO(3:0) = 0x00 RINO(3:0) = 0x02 RINO(3:0) = 0x04 RINO(3:0) = 0x06	16 1.1 1.6 2.2 3.2	20 1.6 2.3 3.2 4.6	24 2.1 3.0 4.2 6.0	kΩ kΩ kΩ kΩ
208	TCRin()	Temperature Coefficient Rin			0.15		%/K
209	VREFin0	Reference Voltage	RINO(0) = 0, BIAS0 = 1 RINO(0) = 0, BIAS0 = 0	1.35 2.25	1.5 2.5	1.65 2.75	V
210	G0	Gain Factors	GC0 = 0x80; RIN0(3:0) = 0x01, GR0 and AGCGF1 = min. RIN0(3:0) = 0x01, GR0 and AGCGF1 = max.		0.8 116		
			RIN0(3:0) = 0x09, GR0 and AGCGF1 = min. RIN0(3:0) = 0x09, GR0 and AGCGF1 = max.		0.2 29		
211	⊿Gdiff	Differential Gain Accuracy	calibration range 5 bit	-0.5		0.5	LSB
212	⊿Gabs	Absolute Gain Accuracy	calibration range 5 bit, guaranteed monotony	-1		1	LSB
213	Vin()diff	Recommended Differential Input Voltage	Vin()diff = V(CHP0) - V(CHN0), RIN0(3:0) = 0x01 RIN0(3:0) = 0x09	10 40		500 2000	mVpp mVpp
214	Vin()os	Input Offset Voltage	referred to side of input	0	75		μV
215	VOScal	Offset Calibration Range	referenced to the selected source (REFVOS); OR0 = 00 OR0 = 01 OR0 = 10 OR0 = 11		±100 ±200 ±600 ±1200		%V() %V() %V() %V()
216	△VOSdiff	Differential Linearity Error of Offset Correction	calibration range 6 bit	-0.5		0.5	LSB
217	△VOSint	Integral Linearity Error of Offset Correction	calibration range 6 bit	-1		1	LSB
Signa	l Filter	·			*		
301	fg	Cut-off Frequency				4000	kHz
302	phi	Phase Shift	fin 500 kHz for sine/cosine			10	0
	ĮI.	parator Output PZ, NZ	1	Ш	I.	I	
401	Vpk()	· · · · · · · · · · · · · · · · · · ·	EAZ = 1, AGCOFF = 0, ADJ = 0x32	225	250	275	mV
402	SR()	Output Slew Rate	EAZ = 1		1		V/µs
Line C		uts PS, NS, PC, NC, PZ, NZ	1	U			1
501	Vpk()max	Permissible Output Amplitude	VDD = 4.5 V, DC level = VDD / 2, $RL = 50 \Omega \text{ vs. } VDD / 2$			300	mV
502	Vpk()	Output Amplitude With Automatic Gain Control	AGCOFF = 0, ADJ (5:0) = 0x32	225	250	275	mV

Rev A1, Page 8/29

ELECTRICAL CHARACTERISTICS

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
503	fg	Cut-off Frequency	CL = 250 pF	500			kHz
504	Vos	Offset Voltage			±200		μV
505	Isc()	Short-circuit Current	pin shorten to VDD or GND	10	30	50	mA
506	llk()	Tristate Leakage Current	tristate or reversed supply	-1		1	μA
Auton	natic Signa	l Gain Controller	****				
601	tset()	Automatic Gain Settling Time	square control active, AGCGF1: 0x40 → 0x80		2		ms
602	Gt()min	Control Range Monitoring 1: lower limit	CH1 gain/GR12, AGCGF1 = 0x10		1.2		
603	Gt()max	Control Range Monitoring 2: upper limit	CH1 gain/GR12, AGCGF1 = 0xF0		16.6		
604	Vt()min	Signal Level Monitoring 1: lower limit	referenced to Vscq()		40		%Vpp
605	Vt()max	Signal Level Monitoring 2: upper limit	referenced to Vscq()		130		%Vpp
Test C	Current ERI	R					
701	I(ERR)	Permissible Test Current	test mode activated	0		1	mA
Bias (Current Sou	urce and Reference Voltages					
801	IBN()	Bias Current Source	MODE(3:0) = 0x01, I(NC) vs. VDDS	180	200	220	μA
802	VPAH	Reference Voltage VPAH	referenced to GND	45	50	55	%VDD
803	V05	Reference Voltage V05		450	500	550	mV
804	V025	Reference Voltage V025			50		%V05
Powe	r-Down-Res	set					I.
901	VDDon	Turn-on Threshold (power-on release)	increasing voltage at VDD vs. GND	3.7	4	4.3	V
902	VDDoff	Turn-off Threshold (power-down reset)	decreasing voltage at VDD vs. GND	3.2	3.5	3.8	V
903	VDDhys	Threshold Hysteresis	VDDhys = VDDon — VDDoff	0.3			V
Clock	Oscillator						
A01	fclk()	Internal Clock Frequency	MODE(3:0) = 0x0A, fclk(NS)	120	160	200	kHz
Error	Signal Inpu	ut/Output, Pin ERR					
B01	Vs()lo	Saturation Voltage lo	vs. GND, I() = 4 mA			0.4	V
B02	Isc()	Short-circuit Current lo	vs. GND; V(ERR) ≤ VDD V(ERR) > VTMon	4 2			mA mA
B03	Vt()hi	Input Threshold Voltage hi	vs. GND			2	V
B04	Vt()lo	Input Threshold Voltage lo	vs. GND	0.8			V
B05	Vt()hys	Input Hysteresis	Vt()hys = Vt()hi - Vt()lo	300	500		mV
B06	lpu()	Input Pull-up Current	V() = 0VDD - 1 V, EPU = 1	-400	-300	-200	μA
B07	Rpu()	Input Pull-Up Resistor	EPU = 0		500		kΩ
B08	Vpu()	Pull-up Voltage	Vpu() = VDD - V(), I() = -5 μA, EPU = 1			0.4	V
B09	VTMon	Test Mode Activation Threshold	increasing voltage at ERR			VDD + 1.5	V
B10	VTMoff	Test Mode Disabling Threshold	decreasing voltage at ERR	VDD + 0.5			V
B11	VTMhys	Test Mode Hysteresis	VTMhys = VTMon — VTMoff	0.15	0.3		V
B12	llk()	Leakage Current	tristate or reversed supply voltage	-1	-10	-50	μA
Suppl	ly Switch a	nd Reverse Polarity Protection VI	DDS, GNDS				
C01	Vs()	Saturation Voltage VDDS vs. VDD	Vs(VDDS) = VDD - V(VDDS) I(VDDS) = -10 mA0 mA I(VDDS) = -20 mA10 mA			150 250	mV mV
C02	Vs()	Saturation Voltage GNDS vs. GND	Vs(GNDS) = V(GNDS) — GND I(GNDS) = 0 mA10 mA			150	mV
			I(GNDS) = 10 mA20 mA			250	mV
C03	C()	Backup Capacitor Analog Supply VDDS vs. GNDS		100			nF
	-						

Rev A1, Page 9/29

ELECTRICAL CHARACTERISTICS

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	Configurati	on Interface SCL, SDA	I.		.,,,,	maxi	
D01	Vs()lo	Saturation Voltage lo	I() = 4 mA			400	mV
D02	Isc()	Short-circuit Current lo	V	4		80	mA
D03	Vt()hi	Input Threshold Voltage hi				2	V
D04	Vt()lo	Input Threshold Voltage lo		0.8			V
D05	Vt()hys	Input Hysteresis	Vt()hys = Vt()hi - Vt()lo	300	500		mV
D06	lpu()	Input Pull-up Current	V() = 0VDDS - 1 V	-600	-300	-60	μA
D07	Vpu()	Input Pull-up Voltage	Vpu() = VDDS - V(), I() = -5 μA			0.4	V
D08	fclk(SCL)	Clock Frequency at SCL	ENFAST = 0 ENFAST = 1	60 240	80 320	100 400	kHz kHz
D09	tbusy()cfg	Duration of Startup Configuration	IBN not calibated, EEPROM access without read failure, time to outputs operational; ENFAST = 0 ENFAST = 1		40 25	55 35	ms ms
D10	tbusy()err	End Of I2C Communication; Time Until I2C Slave Is Enabled	IBN not calibrated; V(SDA) = 0 V V(SCL) = 0 V or arbitration lost no EEPROM CRC ERROR		4 indef. 45 95	12 135 285	ms ms ms ms
D11	td()	Start Of Master Activity On I2C Protocol Error	SCL without clock signal: V(SCL) = constant; IBN not calibrated IBN calibrated to 200 µA	25 64	80 80	240 120	μs μs
D12	td()i2c	Delay for I2C-Slave-Mode Enable	no EEPROM, V(SDA) = 0 V		4	6.2	ms
Tempe	erature Mon	itoring		"			
E01	VTs	Temperature Sensor Voltage	VTs() = VDDS - V(PS), Tj = 27 °C, Calibration Mode 3, no load	600	650	700	mV
E02	TCs	Temp. Co. of Temperature Sensor Voltage			-1.8		mV/K
E03	VTth	Temperature Warning Activation Threshold	VTth() = VDDS - V(NS), Tj = 27 °C, Calibration Mode 3, no load; CFGTA(3:0) = 0x00 CFGTA(3:0) = 0x0F	260 470	310 550	360 630	mV mV
E04	TCth	Temp. Co. Temperature Warning Activation Threshold			0.06		%/K
E05	Thys	Temperature Warning Hysteresis		4	12	20	°C
E06	ΔT	Relative Shutdown Temperature	$\Delta T = Toff - Twarn$	4	12	20	°C

Rev A1, Page 10/29

PROGRAMMING

Register Map	Page 11	Signal Conditi	ioning CH1, CH2 (X3X6) Page 21
		GR12:	Gain Range CH1, CH2 (coarse)
		VOS12:	Offset Reference Source CH1, CH2
Configuration	Interface Page 13	OR1:	Offset Range CH1 (coarse)
ENFAST:	I ² C Fast Mode Enable	OF1:	Offset Factor CH1 (fine)
ENSL:	I ² C Slave Mode Enable	OR2:	Offset Range CH2 (coarse)
DEVID:	Device ID of EEPROM providing the	OF2:	Offset Factor CH2 (fine)
	chip configuration data (e.g. 0x50)	PH12:	Phase Correction CH1 vs. CH2
CHKSUM:	CRC of chip configuration data	GC2:	Gain Correction CH2 (fine)
	(address range 0x40 to 0x5E)		
CHPREL:	Chip Release	Signal Conditi	ioning CH0 (X1, X2) Page 23
NTRI:	Tristate Function and	GC0:	Gain Correction CH0 (fine)
	Op. Mode Change	GR0:	Gain Range CH0 (coarse)
	,	VOS0:	Offset Reference Source CH0
Calibration	Page 15	OR0:	Offset Range CH0 (coarse)
CFGIBN:	Bias Calibration	OF0:	Offset Factor CH0 (fine)
CFGTA:	Temperature Sensor Calibration		
		Signal Level C	Controller Page 24
Operation Mod	des Page 16	AGCOFF:	Setup of AGC
MODE:	Operation Mode	ADJ:	AGC Setpoint
ENF:	Signal Filtering		
			ng and Alarm Output Page 25
Test Mode	Seite 17	EMTD:	Minimal Alarm Indication Time
TMODE:	Test Mode Functions	EPH:	Alarm Input/Output Logic
		EPU:	Alarm Output Pull-Up Enable
Input Configur		EMASKA:	Error Mask For Alarm Indication (pin
Signal Path Mo	ultiplexer Page 18		ERR)
INMODE:	Diff./Single-Ended Input Mode	EMASKE:	Error Mask For Protocol (EEPROM)
RIN12:	I/V Mode and Input Resistance CH1,	EMASKO:	Error Mask For Driver Shutdown
	CH2		
BIAS12:	Reference Voltage CH1, CH2	ERR1:	Error Protocol: First Error
RIN0:	I/V Mode and Input Resistance CH0	ERR2:	Error Protocol: Last Error
BIAS0:	Reference Voltage CH0	ERR3:	Error Protocol: History
MUXIN:	Input-To-Channel Assignment:		
	X3X6 to CH1, CH2	PDMODE:	Driver Activation After Cycling Power
INVZ:	Index Signal Inversion		
EAZ:	Index Comparator Enable	AGCGF1:	AGC Gain Fine CH1 (read-only)
BIASEX:	Input Reference Selection		
BYP	Input-to-output Feedthrough		

Rev A1, Page 11/29

OVERV	IEW							
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Configu	ration Interfa	ice	I		1	1	1	
0x40	ENFAST				DEVID(6:0)			
Calibrat	ion							
0x41		CFGIBN(3:0) CFGTA(3:0)						
Operation	on Modes				1			
0x42	NTRI	1	0	_		MOD	DE(3:0)	
Input Co	onfiguration a	and Signal Pat	h Multiplexer	I	'			
0x43	EAZ	0	0	0	INVZ	INMODE	MUXI	N(1:0)
0x44	0	0	0	1	0	0	0	0
Signal L	evel Control	ler		1	1			
0x45	AGCOFF	0			AD	J(5:0)		
Signal C	Conditioning	CH1, CH2						
0x46	0	0	0	0	0		GR12(2:0)	
0x47	0	0	0	0	1	0	0	0
0x48	OR1(0)	0	1	0	0	0	0	0
0x49		1		OF1(6:0)			1	OR1(1)
0x4A	OF:	2(1:0)	OR2	(1:0)		OF1	(10:7)	
0x4B				OF2	2(9:2)			
0x4C				PH12(6:0)				OF2(10
0x4D	BIAS	EX(1:0)	BYP	1	1		PH12(9:7)	
0x4E	ENF	BIAS12	VOS1	2(1:0)		RIN1	2(3:0)	
0x4F				GC2	2(7:0)			
Signal C	Conditioning	CH0						
0x50				GC	0(7:0)			
0x51			-				GR0(2:0)	
0x52			OF0	(5:0)			OR0	(1:0)
0x53	0	BIAS0	VOS	0(1:0)		RIN	0(3:0)	
Error Mo	onitoring and	l Alarm Outpu	t					
0x54	_				EMASKA(6:0)			
0x55	TMO	DE(1:0)		EMTD(2:0)		EPH	_	ı
0x56	-				EMASKO(6:0)			
0x57			KE(3:0)		ENSL	EPU	_	-
0x58	_	PDMODE	_	-	_		EMASKE(6:4)	
0x59			EEPROM: no		M: AGCGF1(10	3) (read-only)		
0x5A				not d	efined			
OEM Da	ta							
0x5B 0x5E				OEM	l Data			
Check S	Sum / Chip	Release						
0x5F			EEPRON	I: CHKSUM(7:0) / ROM: CHF	PREL(7:0)		

Rev A1, Page 12/29

OVERV	OVERVIEW								
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Error Re	Error Register								
0x60	_				ERR1(6:0)				
0x61			ERR	2(5:0)			-	-	
0x62		ERR	3(3:0)		_	_	_	ERR2(6)	
0x63	_	_	_	_	_		ERR3(6:4)		
Notes	Register entries specified 0 or 1 mean a mandatory programming.								

Table 4: Register layout

Rev A1, Page 13/29

SERIAL CONFIGURATION INTERFACE (EEPROM)

The serial configuration interface consists of the two pins SCL and SDA and enables read and write access to an EEPROM with I²C interface. The readout speed can be adjusted using register bit ENFAST.

ENFAST	Adr 0x40, bit 7
Code	Function
0	Regular clock rate, f(SCL) approx. 80 kHz
1	High clock rate, f(SCL) approx. 320 kHz
Notes	For in-circuit programming bus lines SCL and SDA require pull-up resistors. For line capacitances to 170 pF, adequate values are: $4.7 \ k\Omega \ \mbox{with clock frequency } 80 \ \mbox{kHz} \\ 2 \ \mbox{k}\Omega \ \mbox{with clock frequency } 320 \ \mbox{kHz}$
	The pull-up resistors may not be less than $1.5 \mathrm{k}\Omega$. To separate the signals a ground line between SCL and SDA is recommended. iC-MSA requires a supply voltage during EEPROM programming (5 V to VDD).

Table 5: Config. Interface Clock Frequency

Once the supply has been switched on (power down reset) the iC-MSA outputs are high impedance (tristate) until a valid configuration is read out from the EEPROM using device ID 0x50.

Bit errors in the 0x40 to 0x5E memory section are pinpointed by the CRC deposited in register CHK-SUM(7:0) (address 0x5F; the CRC polynomial used is "1 0001 1101").

Should no valid configuration data being available (incorrect CRC value or EEPROM missing), the readin process is repeated; the system aborts following a fourth faulty attempt and iC-MSA switches to I²C slave mode.

For devices loading valid configuration data from the EEPROM, the register bit ENSL decides for enabling the I²C slave function.

ENSL	Adr 0x17, bit 3
Code	Function
0	Normal operation
1	I ² C Slave Mode Enable (Device ID 0x57)

Table 6: Config. Interface Mode

The device ID for the EEPROM can be entered in register DEVID(6:0) (address 0x40), from which iC-MSA will take its configuration after exiting test mode (see page 17). The DEVID(6:0) stored therein is then accepted.

Example of CRC Calculation Routine

```
unsigned char ucDataStream = 0;
int iCRCPoly = 0x11D;
unsigned char ucCRC=0;
int i = 0;

ucCRC = 1; // start value !!!
for (iReg = 0; iReg<31; iReg ++)
{
   ucDataStream = ucGetValue(iReg);
   for (i=0; i<=7; i++) {
      if ((ucCRC & 0x80) != (ucDataStream & 0x80))
          ucCRC = (ucCRC << 1) ^ iCRCPoly;
      else
          ucCRC = (ucCRC << 1);
      ucDataStream = ucDataStream << 1;
   }
}</pre>
```

EEPROM Selection

The following minimal requirements must be fulfilled:

- Operation from 3.3 to 5 V, I²C interface
- Minimal 1024 bit, 128x8 (address range used is 0x40 to 0x7F)
- Support of Page Write with Pages of at least 4 bytes. Otherwise error events can not be saved to the EEPROM (EMASKE(9:0) = 0x000).
- Device ID 0x50 "101 0000", no occupation of 0x57 (A2...A0 = 0). Otherwise iC-MSA is not accessible in I²C slave mode via 0x57 (ENSL = 0).

Recommended devices: Atmel AT24C01B, ST M24C01W, ST M24C02 (2K), ROHM BR24L01A-W, BR24L02-W

Rev A1, Page 14/29

I²C Slave Mode (ENSL = 1)

In this mode iC-MSA behaves like an I²C slave with the device ID 0x57 and the configuration interface permits write and read accesses to iC-MSA's internal registers.

For chip release verification purposes an identification value is stored under ROM address 0x5F; a write access to this address is not permitted.

CHPREL	Adr 0x5F, bit 7:0 (ROM)
Code	Chip Release
0x10	iC-MSA

Table 7: Chip Release

NTRI	Adr 0x42, bit 7
Code	Function
0	Output drivers disabled
1	Setting the operating mode, output drivers active
Notes	NTRI is evaluated only during I ² C slave mode.

Table 8: Tristate Function And Op. Mode Change

Register	Read access in I ² C slave mode (ENSL = 1)
Address	Content
0x00-0x03	Current error memory
0x04-0x3F	Not available
0x40-0x58	Configuration: register addresses 0x40-0x58
0x59	AGCGF1(10:3)
0x5A	Not available
0x5B-0x5E	OEM data: register addresses 0x5B-0x5E
0x5F	Chip release (ROM)
0x60-0x63	Configuration: register addresses 0x60-0x63
0x64-0x77	Not available
0x78	Configuration: register address 0x58
0x79-0x7A	Not available
0x7B-0x7E	OEM data: register addresses 0x5B-0x5E
0x7F	Chip release (ROM)

Table 9: RAM Read Access

Register	Write access in I ² C slave mode (ENSL = 1)
Address	Access and conditions
0x40	Changes possible, no restrictions
0x41	Changes possible (wrong entries for CFGIBN can limit functions)
0x42	Bit 7 = 0 (NTRI): changes to bits (6:0) permitted A change of operating mode follows only on writing Bit 7 = 1 (NTRI); when doing so changes to bits (6:0) are not permitted.
0x43-0x56	Changes possible, no restrictions
0x57	Bit 3 = 1 (ENSL):
	changes to bits (7:4) and (2:0) permitted
0x58	Changes possible, no restrictions
0x59-0x5A	Not available
0x5B-0x5E	Changes possible, no restrictions
others	No changes permitted

Table 10: RAM Write Access

Rev A1, Page 15/29

BIAS SOURCE AND TEMPERATURE SENSOR CALIBRATION

Bias Source Calibration

The calibration of the bias current source in operation mode *Calibration 1* (Tab. 13) is prerequisite for adherence to the given electrical characteristics and also instrumental in the determination of the chip timing (e.g. SCL clock frequency). For setup purposes the IBN value is measured using a $10\,\mathrm{k}\Omega$ resistor by pin VDDS connected to pin NC. The setpoint is $200\,\mu\mathrm{A}$ which is equivalent to a measurement voltage of $2\,\mathrm{V}$.

CFGIBN	Adr 0x41, bit 7:4			
Code k	$IBN \sim \frac{31}{39-k}$	Code k	$IBN \sim \frac{31}{39-k}$	
0x0	79%	0x8	100 %	
0x1	81 %	0x9	103%	
0x2	84 %	0xA	107%	
0x3	86 %	0xB	111%	
0x4	88 %	0xC	115%	
0x5	91 %	0xD	119%	
0x6	94%	0xE	124%	
0x7	97%	0xF	129%	

Table 11: Bias Current Source Calibration

Temperature Sensor

The temperature monitor is calibrated in operating mode *Calibration Mode 3*.

To set the required warning temperature T_2 the temperature sensor voltage VTs at which the warning is generated is first determined. To this end a voltage ramp from VDDS towards GNDS is applied to pin PS until pin ERR triggers an error message (for EMASKA = 0x20 and EMTD = 0x00).

Example: $VTs(T_1)$ is ca. 650 mV, measured from VDDS versus PS, with $T_1 = 25$ °C;

The necessary activation threshold voltage $VTth(T_1)$ is then calculated. The required warning temperature T_2 , temperature coefficients TCs and TCth (see Electrical Characteristics, Section E) and measurement value $VTs(T_1)$ are entered into this calculation:

$$VTth(T_1) = \frac{VTs(T_1) + TCs \cdot (T_2 - T_1)}{1 + TCth \cdot (T_2 - T_1)}$$

Example: For $T_2 = T_1 + 100 \,\text{K}$, $VTth(T_1)$ must be programmed to $443 \,\text{mV}$.

Activation threshold voltage VTth(T_1) is provided for a high impedance measurement (10 M Ω) at output pin NS (measurement versus VDDS) and must be set by programming CFGTA(3:0) to the calculated value.

Example: Altering VTth(T_1) from 310 mV (measured with CFGTA(3:0)= 0x0) to 443 mV is equivalent to 143 %, the closest value for CFGTA is 0x9:

CFGTA	Adr 0x41, bit 3:0		
Code k	$VTth \sim \frac{65+3k}{65}$	Code k	$VTth \sim \frac{65+3k}{65}$
0x0	100 %	0x8	140 %
0x1	105 %	0x9	145 %
0x2	110 %	0xA	150 %
0x3	115 %	0xB	155 %
0x4	120 %	0xC	160 %
0x5	125 %	0xD	165 %
0x6	130 %	0xE	170 %
0x7	135 %	0xF	175 %
Notes	With CFGTA = 0xF Toff is 80 °C typ., with CFGTA = 0x0 Toff is 155 °C typ.		

Table 12: Calibration of Temperature Monitoring

Rev A1, Page 16/29

OPERATING MODES

In order to calibrate iC-MSA, compensate for the input signals and test iC-MSA the mode of operation must be changed. The output function changes according

to the various operating modes; the line drivers and protection against reverse polarity facility are only active in normal mode.

MODE(3:0)		Addr. 0x42;	bit 3:0					
BYP		Addr. 0x4D;	bit 5					
Code	Operating Mode	Pin PS	Pin NS	Pin PC	Pin NC	Pin PZ	Pin NZ	Pin ERR
0x00	Normal operation	PS	NS	PC	NC	PZ	NZ	ERR
0x01	Calibration 1	TANA0(2)	VREFI0	VREFI12	IBN	PZI	NZI	ERR
0x02	Calibration 2	PCH1	NCH1	PCH2	NCH2	_	_	_
0x03	iC-Haus Test 1	VPAH	VPD	_	CGUCK	IPF	V05	IERR
0x04	iC-Haus Test 2	PS_out	NS_out	PC_out	NC_out	PZ_out	NZ_out	IERR
0x05	iC-Haus Test 3	PS_out	NS_out	PC_out	NC_out	PZ_out	NZ_out	ERR
0x06	iC-Haus Test 4, BYP = 0 iC-Haus Test 4, BYP = 1	TANA12(0) X4	TANA12(1) X6	TANA12(2) X3	TANA12(3) X5	TANA12(4) X1	TANA12(5) X2	IERR
0x07	Calibration 3	VTs	VTth	_	_	_	_	ERR
0x08	Saturation low		SCL, SDA and ERR low					
0x09	_	_	_	_	_	_	_	_
0x0A	iC-Haus Test 5	_	_	TP	CLK6	_	_	_
0x0B	_	_	_	_	_	_	_	_
0x0C	_	_	_	_	_	_	_	_
0x0D	_	_	_	_	_	_	_	_
0x0E	IDDQ-Test		All PU/PD	resistors, osc	cillator and sup	oply voltage de	eactivated	
0x0F	_	_	_	_	_	_	_	_

Table 13: Selection of Operating Modes

Calibration Op. Modes

In Calibration Mode 1 the user can measure the BIAS current (IBN), input amplifier reference potential VREFI and the analog signals from channel 0 following signal conditioning (PCH0 and NCH0).

In *Calibration Mode 2* the conditioned signals from channels 1 and 2 are output (PCH1, NCH1, PCH2 and NCH2).

In *Calibration Mode 3* the internal temperature monitoring signals are provided.

Special Device Test Functions

IDDQ-Test, *Saturation Low*, *Saturation High*, and *Test 1 to 5* are test modes for iC-Haus device tests. With an activated bypass (BYP = 1), mode *iC-Haus Test 4* permits the direct feedthrough of X1 - X6 input signals to the output pins; in this instance the output impedance is high-ohmic. Furthermore, if the input voltage divider is selected (by RINx = 1--1), it reduces the signal amplitudes to approx. 7/8.

Signal Filter

iC-MSA has a noise limiting signal filter to filter the conditioned analog signals. This can be activated using ENF.

ENF	Adr 0x4E, bit 7		
Code	Function		
0	Noise limiter deactivated		
1	Noise limiter activated		

Table 14: Signal Filtering

Rev A1, Page 17/29

TEST MODE

iC-MSA switches to test mode if a voltage larger than VTMon is applied to pin ERR (precondition: TMODE(0) = 1). In response iC-MSA transmits its configuration settings as current-modulated data using I/O pin ERR after re-reading the EEPROM. If the voltage at pin ERR falls below VTMoff test mode is terminated and data transmission aborted.

The clock rate for the data output is determined by EN-FAST. Two clock rates can be selected: $780 \, \text{ns}$ for EN-FAST = 1 or $3.125 \, \mu \text{s}$ for ENFAST = 0 (see Elec. Char. D08 for clock frequency and tolerances).

Data is output in Manchester code via two clock pulses per bit. To this end the lowside current source switches between a Z state (OFF = 0 mA) and an L state (ON = 2 mA).

The bit information lies in the direction of the current source switch:

Zero bit: change of state $Z \rightarrow L$ (OFF to ON) One bit: Change of state $L \rightarrow Z$ (ON to OFF)

Transmission consists of a start bit (a one bit), 8 data bits and a pause interval in Z state (the timing is identical with an EEPROM access via the I²C interface).

Example: byte value = 1000 1010

Transmission including the start bit: 1 1000 1010 In Manchester code: LZ LZZL ZLZL LZZL LZZL

Decoding of the data stream:

If test mode is quit with TMODE = 0x00, iC-MSA continues operation without any interruption.

If test mode is quit with TMODE > 0x00, then iC-MSA again reads out its configuration from the EEPROM ac-

cessible at the device ID filed to DEVID(6:0) of address 0x40.

In TMODE = 0x03 the EEPROM is read completely; in all other cases only the address range 0x40 to 0x61 is read to keep the configuration time for device testing short.

TMODE	Addr 0x55, bit 7:6	
Code	Function during test mode	Function following test mode
00	Normal operation	Normal operation
01	Transmission of EEPROM data, address range 0x5B-0x7F and 0x00-0x3F	Repeated read out of EEPROM
10	Normal operation	Repeated read out of EEPROM
11	Transmission of EEPROM data, address range 0x40-0x7F and 0x00-0x3F	Repeated read out of EEPROM

Table 15: Test Mode Functions

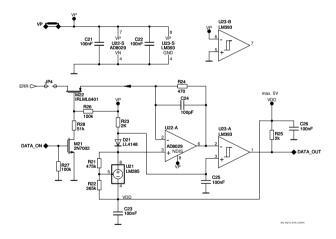


Figure 1: Example circuit for the decoding and conversion of the current-modulated signals to logic levels.

Rev A1, Page 18/29

INPUT CONFIGURATIONS

All input stages are configured as instrumentation amplifiers and thus directly suitable for differential input signals. Referenced input signals can be processed as an option; in this mode input X2 acts as a reference. Both current and voltage signals can be processed as input signals, selected using RIN12(0) and RIN0(0).

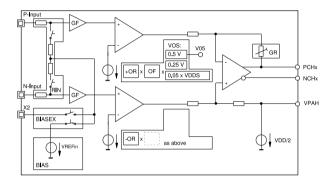


Figure 2: Signal conditioning input circuit.

Current Signals

In I Mode an input resistor Rin() becomes active at each input pin, converting the current signal into a voltage signal. Input resistance Rin() consists of a pad wiring resistor and resistor Rui() which is linked to the adjustable bias voltage source VREFin(). The following table shows the possible selections, with Rin() giving the typical resulting input resistance (see Electrical Characteristics for tolerances).

NB. The input circuit is not suitable for back-to-back photodiodes.

Voltage Signals

In V Mode an optional voltage divider can be selected which reduces unacceptably large input amplitudes to ca. 25%. The circuitry is equivalent to the resistor chain in I Mode; the pad wiring resistor is considerably larger here, however.

For sensors whose offset calibration is to be proportional to an external DC voltage source the reference source can be selected using BIASEX; for all other sensors BIASEX should be set to '00'.

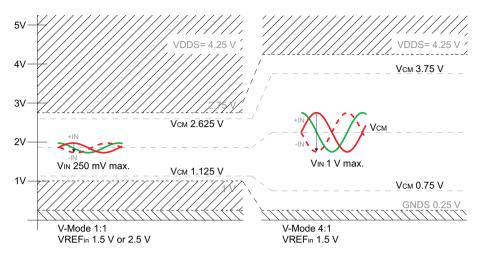
INMODE	Addr 0x43, bit 2
Code	Function
0	Differential input signals
1	Single-ended input signals *
Note	* Input X2 is reference for all inputs.

Table 16: Input Signal Mode

RIN12	Addr 0x4E, bit 3:0			
RIN0	Addr 0x53, bit 3:0			
Code	Nominal Rin()	Intern Rui()	I/V Mode	
-000	1.7 kΩ	1.6 kΩ	current input	
-010	2.5 kΩ	2.3 kΩ	current input	
-100	3.5 kΩ	3.2 kΩ	current input	
-110	4.9 kΩ	4.6 kΩ	current input	
1—1	20 kΩ	5 kΩ	voltage input 4:1*	
0—1	high	1 ΜΩ	voltage input 1:1	
	impedance			
Notes	For single-ended signals identical settings of RIN0 and RIN12 are required. *) VREFin is the voltage divider's footpoint; input currents may be positive or negative (Vin > VREFin, or Vin < VREFin).			

Table 17: I/V Mode and Input Resistance

BIAS12	Addr 0x4E, bit 6
BIAS0	Addr 0x53, bit 6
Code	Function
0	VREFin = 2.5 V for low-side current sinks (e.g. photodiodes with common anode at GNDS)
1	VREFin = 1.5 V for high-side currrent-sources (e.g. photodiodes with common cathode at VDDS) for voltage sources versus ground (e.g. iC-SM2, Wheatstone sensor bridges) for voltage sources with low-side reference (e.g. iC-LSHB, when using BIASEX = 11)


Table 18: Reference Voltage

BIASEX	Addr 0x4D, bit 7:6	
Code	VREFin	Pin function of X2
00	internal	Input Index- (negative zero signal)
10	internal	Output of VREFin12*
11	external	Input for external reference**: V(X2) replaces VREFin
Notes	*) Do not load, buffering recommended **) See Elec. Char. Nos. 205 and 206	

Table 19: Input Reference Selection

Rev A1, Page 19/29

NB: VREFin is referenced to GNDS.

Figure 3: Permissible common mode range and maximum input signal for lowest gain (GR12 = 0x0, GF1, GF2 = 0x00); left side: voltage input 1:1, right side: voltage input 4:1.

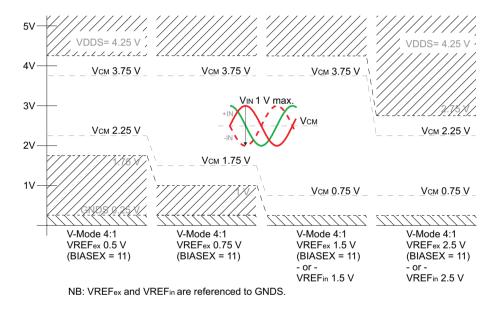


Figure 4: Permissible common mode range for voltage input 4:1 in dependancy to the reference voltage.

Rev A1, Page 20/29

SIGNAL PATH MULTIPLEXING

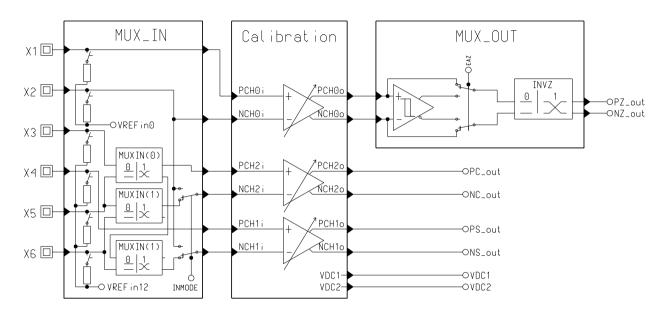


Figure 5: Multiplexer Schematics

The signals for index channel CH0 are connected up to pins X1 and X2. Pins X3 to X6 are allocated to internal channels CH1 and CH2 via MUXIN. INMODE can be activated for referenced input signals; this then selects X2 as the reference input.

MUXIN	Addr 0x43, bit 1:0			
Code	PCH1i	NCH1i	PCH2i	NCH2i
00	X4	X6	Х3	X5
01	X4	X6	X5	X5
10	X4	X5	Х3	X6
11	X4	Х3	X5	X6

Table 20: Input Multiplexer for INMODE = 0

MUXIN	Addr 0x43, bit 1:0			
Code	PCH1i	NCH1i	PCH2i	NCH2i
-0	X4	X2	Х3	X2
-1	X4	X2	X5	X2

Table 21: Input Multiplexer for INMODE = 1

EAZ permits the activation of an analog comparator for index channel CH0.

EAZ	Addr 0x43, bit 7
Code	Function
0	Comparator bypass
1	Comparator active

Table 22: Index Output

For output purposes INVZ allows the index signal phase to be inverted.

INVZ	Addr 0x43, bit 3	3
Code	PZ_out	NZ_out
0	PCH0o	NCH0o
1	NCH0o	PCH0o

Table 23: Index Signal Inversion

Rev A1, Page 21/29

SIGNAL CONDITIONING CH1, CH2

The voltage signals necessary for the conditioning of channels 1 and 2 can be measured in operation mode *Calibration 2*.

Gain Settings CH1, CH2

The gain is set in four stages:

- 1. The automatic gain control is shut down (set register AGCOFF to a value of 1).
- 2. The gain range is selected so that the differential signal amplitude of CH1 is closest to 1 Vpp (signal Px vs. Nx, see Figure below).
- 3. The automatic gain control is turned on (set register AGCOFF to a value of 0) and adjust ADJ to obtain a signal amplitude of 1 Vpp for CH1.
- 4. The CH2 signal amplitude can then be adjusted relative to the CH1 signal amplitude via gain correction ratio GC2.

AGC gain range reserve can be checked by the value of read-only register AGCGF1 which represents the 8 most significant bits of the current automatic gain setting for channel 1.

NB: automatic gain control is halted during AGCGF1 readout and will continue automatically afterwards.

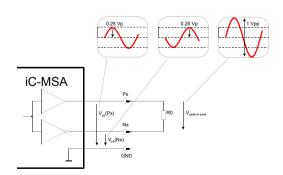


Figure 6: Definition of 1 Vpp signal. Termination R0 must be high-ohmic during all *Test* and *Calibration* modes.

GR12	Addr 0x46, bit 2:0	
Code	AGC on (AGCOFF = 0)	AGC off (AGCOFF = 1)
0x0	0.20 2.77	0.75
0x1	0.34 4.69	1.27
0x2	0.51 7.03	1.89
0x3	0.71 9.82	2.65
0x4	1.01 13.8	3.73
0x5	1.28 17.7	4.77
0x6	1.68 23.2	6.24
0x7	2.11 29.1	7.83

Table 24: Gain Range CH1, CH2 with voltage divider inputs (RIN12=0x9)

GR12	Addr 0x46, bit 2:0	
Code	AGC on (AGCOFF = 0)	AGC off (AGCOFF = 1)
0x0	0.80 11.1	2.98
0x1	1.36 18.8	5.06
0x2	2.04 28.1	7.58
0x3	2.85 39.3	10.6
0x4	4.02 55.4	14.9
0x5	5.14 70.8	19.1
0x6	6.73 92.6	25.0
0x7	8.44 116	31.3

Table 25: Gain Range CH1, CH2 (RIN12≠0x9)

GC2	Addr 0v4E bit 7:0
GCZ	Addr 0x4F, bit 7:0
Code	Ratio
0x00	0.8292
0x01	0.8304
	$20\frac{GC2-128}{2047}$
0x80	1.00
	$20^{\frac{GC2-128}{2047}}$
0xFE	1.2025
0xFF	1.2043

Table 26: Gain Correction Ratio CH2/CH1

AGCGF1	Addr 0x59, bit 7:0
Value	AGC reserve
0xF0	alarm (±0.0 dB)
0x80	0.27 3.7 (±11.4 dB)
0x5E92	0.33 3.0 (±9.5 dB)
0x4BB4	0.50 2.0 (±6.0 dB)
0x33CD	0.67 1.5 (±3.5 dB)
0x10	alarm (±0.0 dB)

Table 27: Minimum AGC Reserve (read only)

Rev A1, Page 22/29

Offset Calibration CH1, CH2

In order to calibrate the offset the reference source must first be selected using VOS12. Two fixed voltages and one dependent source are available for this purpose.

VOS12	Addr 0x4E, bit 5:4
Code	Type of source
0x0	Feedback of sensor supply voltage: VDDS for supply-dependent differential voltage signals for Wheatstone sensor bridges
0x1, 0x2	Fixed reference: V05 of 500 mV, V025 of 250 mV for single-ended or differential signals (regulated sensor or waveform generator)
0x3	not permitted

Table 28: Offset Reference Source CH1, CH2

The calibration range for the CH1/CH2 offset is dependent on the selected VOS12 source and is set using OR1 and OR2. Both sine and cosine signals are then calibrated using factors OF1 and OF2. The calibration target is reached when the DC fraction of the differential signals PCHx versus NCHx is zero.

OR1	Addr 0x49, bit 0; Addr 0x48, bit 7
OR2	Addr 0x4A, bit 5:4
Code	Range
0x0	x1
0x1	x2
0x2	x6
0x3	x12

Table 29: Offset Range CH1, CH2

OF1	Addr 0x4A, bit 3:0; Addr 0x49, bit 7:1		
OF2	Addr 0x4C, bit 0; Addr 0x4B, bit 7:0; Addr 0x4A, bit 7:6		
Code	Factor	Code	Factor
0x000	0	0x400	0
0x001	+0.00098	0x401	- 0.00098
	+ Code / 1023		- (Code - 1024) / 1023
0x3FF	+1	0x7FF	<u>-1</u>

Table 30: Offset Factors CH1, CH2

Phase Correction CH1 vs. CH2

The phase shift between CH1 and CH2 can be adjusted using parameter PH12. Following phase calibration other calibration parameters may have to be adjusted again (those as gain ratio, intermediate potentials and offset voltages).

PH12	Addr 0x4D, bit 2:0; Addr 0x4C, bit 7:1		
Code	Correction angle	Code	Correction angle
0x000	0°	0x200	0°
0x001	+0.0204°	0x201	-0.0204°
	+10.42° · PH12/511		– 10.42° · (PH12 - 512) /511
0x1FF	+10.42°	0x3FF	- 10.42°

Table 31: Phase Correction CH1 vs. CH2

Rev A1, Page 23/29

SIGNAL CONDITIONING CHO

The voltage signals needed to calibrate channel 0 are available in *Calibration Mode 1*.

Gain Settings CH0

The CH0 gain is set in the following stages:

- 1. Adjust CH1 and CH2.
- 2. Set gain range GR0 to the same value as GR12.
- 3. GC0 then permits fine gain ratio adjustment relative to CH1.

GR0	Addr 0x51, bit 2:0	
Code	AGC on (AGCOFF = 0)	AGC off (AGCOFF = 1)
0x0	0.20 2.77	0.75
0x1	0.34 4.69	1.27
0x2	0.51 7.03	1.89
0x3	0.71 9.82	2.65
0x4	1.01 13.8	3.73
0x5	1.28 17.7	4.77
0x6	1.68 23.2	6.24
0x7	2.11 29.1	7.83

Table 32: Gain Range CH0 with voltage divider inputs (RIN0=0x9)

GR0	Addr 0x51, bit 2:0	
Code	AGC on (AGCOFF = 0)	AGC off (AGCOFF = 1)
0x0	0.80 11.1	2.98
0x1	1.36 18.8	5.06
0x2	2.04 28.1	7.58
0x3	2.85 39.3	10.6
0x4	4.02 55.4	14.9
0x5	5.14 70.8	19.1
0x6	6.73 92.6	25.0
0x7	8.44 116	31.3

Table 33: Gain Range CH0 (RIN0≠0x9)

GC0	Addr 0x50, bit 7:0
Code	Ratio
0x00	0.8292
0x01	0.8304
	$20\frac{GC0-128}{2047}$
0x80	1.00
	$20^{\frac{GC0-128}{2047}}$
0xFE	1.2025
0xFF	1.2043

Table 34: Gain Correction Ratio CH0/CH1

Offset Calibration CH0

To calibrate the offset the source of supply must first be selected using VOS0 (see Offset Calibration CH1 and CH2 for further information).

VOS0	Addr 0x53, bit 5:4
Code	Source
0x0	0.05 · V(VDDS)
0x1	0.5 V
0x2	0.25 V
0x3	not permitted

Table 35: Offset Reference Source CH0

OR0	Addr 0x52, bit 1:0
Code	Range
0x0	x1
0x1	x2
0x2	x6
0x3	x12

Table 36: Offset Range CH0

OF0	Addr 0x52, bit 7:2		
Code	Factor	Code	Factor
0x00	0	0x20	0
0x01	+0.0322	0x21	- 0.0322
	+OF0/31		-(OF0-32)/31
0x1F	+1	0x3F	-1

Table 37: Offset Factor CH0

Rev A1, Page 24/29

AUTOMATIC SIGNAL GAIN CONTROL and SIGNAL MONITORING

Via its automatic gain control iC-MSA can keep the output signals for the ensuing sine-to-digital conversion constant regardless of changes in input signal level.

Both the controller operating range and input signal amplitude for the controller are monitored and can be enabled for error messaging.

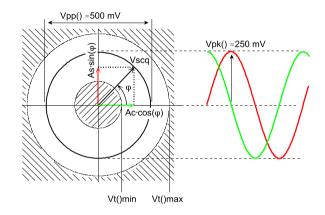


Figure 7: Signal level monitoring with square control (example for AGCOFF = 0, ADJ = 0x32; see Elec. Char. Nos.604 and 605 regarding Vt()min resp. Vt()max).

AGCOFF	Addr 0x45, bit 7
Code	Function
0	Sine/cosine square control
1	AGC turned off

Table 38: Controller Operating Mode

ADJ	Addr 0x45, bit 5:0
Code	Square control AGCOFF = 0
0x00	Vpp() ca. 300 mV (60 %)
0x01	Vpp() ca. 305 mV (61 %)
	$Vpp() \approx 300 mV \frac{77}{77 - (0.625 * Code)}$
0x32	Vpp() ca. 500 mV (98 %)
0x3F	Vpp() ca. 600 mV (120 %)

Table 39: Vpp Setpoint For Square Control

Rev A1, Page 25/29

ERROR MONITORING AND ALARM OUTPUT

The following table gives the errors which can both be recognized by iC-MSA and enabled either for messaging, output shutdown or protocol in the EEPROM.

Mask EMASKA stipulates that errors should be signaled at pin ERR, mask EMASKO determines whether the line drivers are to be shutdown or not (with PDMODE defining reactivation) and mask EMASKE governs the storage of error events in the EEPROM.

EMASKA	Addr 0x54, bit 6:0	
EMASKO	Addr 0x56, bit 6:0	
EMASKE	Addr 0x58, bit 2:0; Addr 0x57, bit 7:4	
Bit	Error Event	
6*	Configuration error (SDA or SCL pin error, no Ack signal from EEPROM or invalid check sum); EMASKO(6) = 1 (ROM bit): The line drivers remain high impedance (tristate) when cycling power.	
5	Excessive temperature warning	
4	External system error	
3	Control error 2: range at max. limit	
2	Control error 1: range at min. limit	
1	Signal error 2: clipping	
0	Signal error 1: loss of signal (poor differential amplitude**, wrong s/c phase)	
EMASKA	Error Mask Alarm Output ERR	
1	Enable: event changes state of pin ERR (if EMASKO does not disable the output function).	
0	Disable: event does not affect pin ERR.	
EMASKO	Error Mask Driver Shutdown	
1	Enable: event resets pin ACO to the 5 mA range, tristates the line driver outputs and pin ERR (i.e. low-active error messages can not be displayed)	
0	Disable: output functions remain active	
EMASKE	Error Mask EEPROM Savings	
1	Enable: event will be latched	
0	Disable: event will not be latched	
Notes	*) Pin ERR can not pull low on configuration error, use high-active error logic instead (EPH = 1); **) Also due to excessive input signals or internal signal clipping.	

Table 40: Error Masking

Alarm Output: I/O pin ERR

Pin ERR is operated by a current-limited open drain output driver and has an internal pull-up which can be shutdown. The ERR pin also acts as an input for external system error messaging and for switching iC-MSA to test mode for which a voltage of greater than VTMon must be applied. Interpretation of external system error messaging and the phase length of the message output can be set using EPH; the minimum signaling duration for internal errors is adjusted using EMTD.

EPH	Addr 0x55, bit 2	
Code	State on error	State w/o error
0	active low	high impedance, with input function for a low-active system error;
1	high impedance	active low

Table 41: I/O Logic, Alarm Output ERR

EMTD	Addr 0x55, bit 5:3		
Code	Indication Time	Code	Indication Time
0x0	0 ms	0x4	50 ms
0x1	12.5 ms	0x5	62.5 ms
0x2	25 ms	0x6	75 ms
0x3	37.5 ms	0x7	87.5 ms

Table 42: Min. Indication Time, Alarm Output ERR

EPU	Addr 0x57, bit 2	
Code	Function	
0	No internal pull-up	
1	Internal 300 µA pull-up current source active	

Table 43: Pull-Up Enable, Alarm Output ERR

Excessive Temperature Warning

Exceeding the temperature warning threshold T_w (corresponds to T_2 , refer to Temperature Sensor, page 15) can be signaled at pin ERR or used to shut down the line drivers (via mask EMASKO). The temperature warning is cleared when the temperature falls below T_w - T_{hvs} .

Notice: If the temperature shutdown threshold $T_{off} = T_w + \Delta T$ is exceeded, the line drivers are shut down independently of EMASKO. For ΔT refer to Elec. Char. E06.

Driver Shutdown

PDMODE	Addr 0x58, bit 6	
Code	Function	
0	Line driver active when no error persists	
1	Line driver active after power-on	

Table 44: Driver Activation

Error Protocol

Out of the errors pinpointed by EMASKE both the first (under ERR1) and last error (under ERR2) which occur after the iC-MSA is turned on are stored in the EEP-ROM.

Rev A1, Page 26/29

The EEPROM also has a memory area in which all occurring errors can be stored (ERR3). Only the fact that an error has occurred can be recorded, with no information as to the time and frequency of that error given. The EEPROM memory can be used to statistically evaluate the causes of system failure, for example.

ERR1	Addr 0x60, bit 6:0	
ERR2	Addr 0x62, bit 0; Addr 0x61, bit 7:2	
ERR3	Addr 0x63, bit 2:0; Addr 0x62, bit 7:4	
Bit	Error Event	
6:0	Assignation according to EMASKE	
Code	Function	
0	No event	
1	Registered error event	

Table 45: Error Protocol

REVERSE POLARITY PROTECTION

The line drivers in iC-MSA are protected against reverse polarity and short-circuiting. A defective device cable or one wrongly connected cause damage neither to iC-MSA nor to the components protected against reverse polarity by VDDS and GNDS. The following pins

are also reverse polarity protected: PC, NC, PS, NS, PZ, NZ, ERR, VDD, and GND (as long as GNDS is only loaded versus VDDS). The maximum voltage difference between the pins should not be greater than 6 V, the exception here being pin ERR.

Rev A1, Page 27/29

APPLICATION HINTS

PLC Operation

There are PLCs with a remote sense supply which require longer for the voltage regulation to settle. At the same time the PLC inputs can have high-impedance resistances versus an internal, negative supply voltage which define the input potential for open inputs.

In this instance iC-MSA's reverse polarity protection feature can be activated as the outputs are tristate during the start phase and the resistances in the PLC determine the pin potential. During the start phase neither the supply VDD nor the output pins, which are also monitored, must fall to below ground potential (pin GND); otherwise the device is not configured and the outputs remain permanently set to tristate.

In order to ensure that iC-MSA starts with the PLCs mentioned above pull-up resistors can be used in the encoder. Values of $100\,\mathrm{k}\Omega$ are usually sufficient; it is, however, recommended that PLC specifications be specifically referred to here.

Connecting MR sensor bridges for safety-related applications

For safety-related applications iC-MSA requires an external overvoltage protection of supply VDD (Zener diode with fuse, for instance) and external pull-down resistors at the inputs X3 to X6 towards GNDS (of up to $100 \, \text{k}\Omega$).

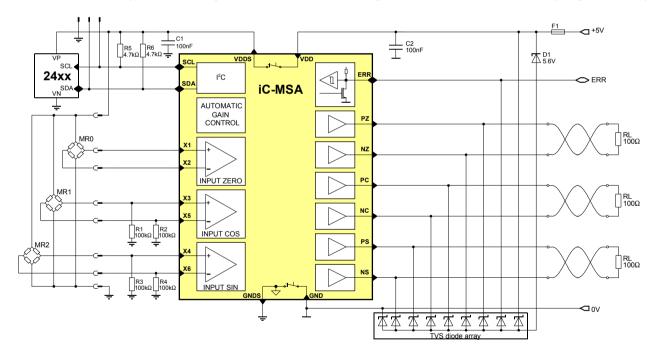


Figure 8: Example circuit for safety-related applications with iC-MSA.

Rev A1, Page 28/29

Motor feedback encoder with iC-MSA, iC-MSB and single EEPROM

In this application iC-MSB is fed with typically 2048 CPR sine and cosine signals, and an index signal. A constant signal level is achieved by controlling the sensor's LED current. iC-MSA is utilized to provide C/D commutation signals, typically with 1 CPR, at a constant amplitude. At higher rotation speed the sine/cosine amplifier cut-off-frequency is exceeded and iC-MSB increases the LED current. In order to keep the low frequency signals of C/D constant, iC-MSA automatically reduces the gain.

iC-MSA and iC-MSB are multi-master I²C capable and feature non-overlapping configuration register addresses. Thus, both devices can share a single EEPROM providing individual configuration data.

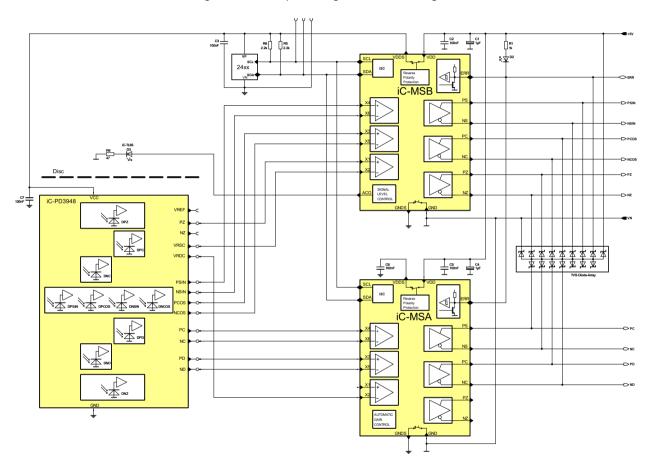


Figure 9: Example circuit with iC-MSA, iC-MSB and single EEPROM.

iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email.

Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials.

The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Rev A1, Page 29/29

ORDERING INFORMATION

Туре	Package	Order Designation
iC-MSA	TSSOP20 with thermal pad	iC-MSA TSSOP20-TP

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH

Tel.: +49 (61 35) 92 92-0

Am Kuemmerling 18

D-55294 Bodenheim

GERMANY

Tel.: +49 (61 35) 92 92-0

Web: http://www.ichaus.com

E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners