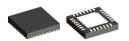
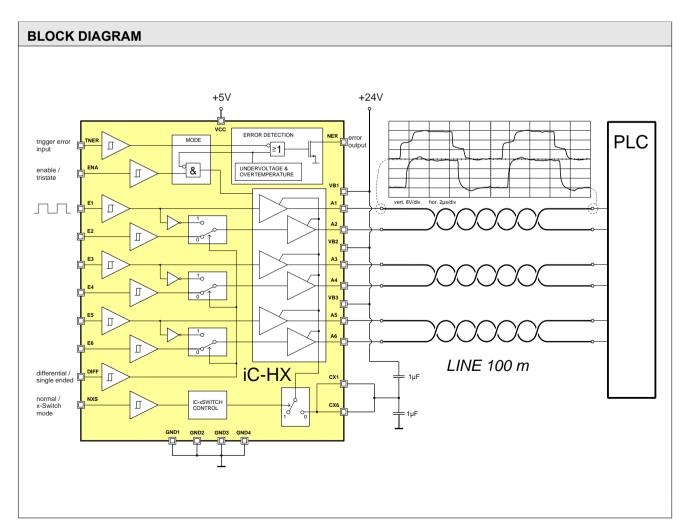
### 3-CHANNEL DIFFERENTIAL COLD LINE DRIVER



Rev B2, Page 1/12


### **FEATURES**

- ♦ 6 current-limited and short-circuit-proof push-pull drivers
- ♦ Differential 3-channel operation selectable
- Integrated impedance adaption for 30 to 140  $\Omega$  lines
- ♦ Wide power supply range from 4 to 40 V
- ♦ 200 mA output current (at VB = 24 V)
- ♦ Low output saturation voltage (< 0.4 V at 30 mA)
- ♦ Compatible with TIA/EIA standard RS-422
- ♦ Tristate switching of outputs enables use in buses
- ♦ Short switching times and high slew rates
- ♦ Low static power dissipation
- ♦ Dynamic power dissipation reduced with iC-xSwitch
- ♦ Schmitt trigger inputs with pull-down resistors, TTL and CMOS compatible; voltage-proof up to 40 V
- ♦ Thermal shutdown with hysteresis
- ♦ Error message trigger input TNER
- ♦ Open-drain error output NER, active low with excessive chip temperature and undervoltage at VCC or VB
- ♦ Operating temperature range from -40 to 125 °C


### **APPLICATIONS**

- Line drivers for 24 V control engineering
- ♦ Linear scales and encoders
- MR sensor systems

### **PACKAGES**



QFN28 5x5mm<sup>2</sup>



### 3-CHANNEL DIFFERENTIAL COLD LINE DRIVER



Rev B2, Page 2/12

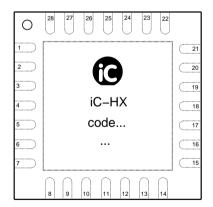
### **DESCRIPTION**

iC-HX is a fast line driver with six independent channels and integrated impedance adaptation for 30 to 140  $\Omega$  lines.

Channels are paired for differential 3-channel operation by a high signal at the DIFF input, providing differential output signals for the three inputs E1, E3 and E5. All inputs are compatible with CMOS and TTL levels.

The push-pull output stages have a driver power of typically 200 mA from 24 V and are short-circuit-proof and current-limited, shutting down with excessive temperature. For bus applications the output stages can be switched to high impedance using input ENA.

To reduce the dynamic power dissipation in applications with long lines the iC-HX uses the iC-xSwitch.


iC-HX monitors supply voltages VB and VCC and the chip temperature, switching all output stages to high impedance in the event of error and set NER active low. In addition, the device also monitors voltage differences at the pins VB1, VB2 and VB3 and generates an error signal if the absolute value exceeds 0.75 V.

The open-drain output NER allows the device to be wired-ORed to the relevant NER error outputs of other iC-HXs and iC-DLs. Via input TNER the message outputs of other ICs can be extended to generate system error messages. NER switches to high impedance if supply voltage VCC ceases to be applied.

The device is protected against ESD.

### **PACKAGING INFORMATION QFN28 to JEDEC Standard**

### PIN CONFIGURATION QFN28 5 x 5 mm<sup>2</sup>



### **PIN FUNCTIONS**

#### No. Name Function

1 E1 Input Channel 12 E2 Input Channel 23 E3 Input Channel 3

4 n.c.

5 E4 Input Channel 4

#### PIN FUNCTIONS

| PIN FUNCTIONS |      |                                      |  |  |  |  |  |
|---------------|------|--------------------------------------|--|--|--|--|--|
| No.           | Name | Function                             |  |  |  |  |  |
| 6             | E5   | Input Channel 5                      |  |  |  |  |  |
| 7             | E6   | Input Channel 6                      |  |  |  |  |  |
| 8             | VCC  | +5 V Supply                          |  |  |  |  |  |
|               |      | Capacitor iC-xSwitch                 |  |  |  |  |  |
| 10            | TNER | Error Input, low active              |  |  |  |  |  |
| 11            | NER  | Error Output, active low             |  |  |  |  |  |
| 12            | A6   | Output Channel 6                     |  |  |  |  |  |
| 13            | GND4 | Ground                               |  |  |  |  |  |
| 14            | VB3  | +4.5 40 V Power Supply               |  |  |  |  |  |
| 15            | A5   | Output Channel 5                     |  |  |  |  |  |
| 16            | GND3 | Ground                               |  |  |  |  |  |
|               | A4   | Output Channel 4                     |  |  |  |  |  |
| 18            | VB2  | +4.5 40 V Power Supply               |  |  |  |  |  |
|               | A3   | Output Channel 3                     |  |  |  |  |  |
| 20            | GND2 | Ground                               |  |  |  |  |  |
| 21            | A2   | Output Channel 2                     |  |  |  |  |  |
| 22            | VB1  | +4.5 40 V Power Supply               |  |  |  |  |  |
|               |      | Ground                               |  |  |  |  |  |
|               | A1   | Output Channel 1                     |  |  |  |  |  |
|               | NXS  | Enable iC-xSwitch, low active        |  |  |  |  |  |
| _             | ENA  | Enable Input, high active            |  |  |  |  |  |
| 27            | CXS1 |                                      |  |  |  |  |  |
| 28            | DIFF | Differential Mode Input, high active |  |  |  |  |  |
|               |      |                                      |  |  |  |  |  |

The pins VB1, VB2 and VB3 must be connected to the same driver supply voltage VB. The pins GND1, GND2, GND3 and GND4 must be connected to GND. To improve heat dissipation, the *thermal pad* at the bottom of the package should be joined to an extended copper area which must have GND potential.

### 3-CHANNEL DIFFERENTIAL COLD LINE DRIVER



Rev B2, Page 3/12

### **ABSOLUTE MAXIMUM RATINGS**

Beyond these values damage may occur; device operation is not guaranteed. Absolute Maximum Ratings are no Operating Conditions. Integrated circuits with system interfaces, e.g. via cable accessible pins (I/O pins, line drivers) are per principle endangered by injected interferences, which may compromise the function or durability. The robustness of the devices has to be verified by the user during system development with regards to applying standards and ensured where necessary by additional protective circuitry. By the manufacturer suggested protective circuitry is for information only and given without responsibility and has to be verified within the actual system with respect to actual interferences.

| Item | Symbol | Parameter                            | Conditions                            |      |      | Unit |
|------|--------|--------------------------------------|---------------------------------------|------|------|------|
| No.  |        |                                      |                                       | Min. | Max. |      |
| G001 | VCC    | Voltage at VCC                       |                                       | 0    | 7    | V    |
| G002 | VBx    | Voltages at VB1, VB2, VB3            |                                       | 0    | 40   | V    |
| G003 | V()    | Voltage at E16, A16, DIFF, ENA, TNER |                                       | 0    | 40   | V    |
| G004 | I(Ax)  | Current in Ax (x=16)                 |                                       | -800 | 800  | mA   |
| G005 | I(Ex)  | Current in E1E6, Diff, ENA, TNER     |                                       | -4   | 4    | mA   |
| G006 | V(NER) | Voltage at NER                       |                                       | 0    | 40   | V    |
| G007 | I(NER) | Current in NER                       |                                       | -4   | 25   | mA   |
| G008 | V()    | ESD Suceptibility at all pins        | HBM 100 pF discharged through 1.5 k Ω |      | 2    | kV   |
| G009 | Tj     | Operating Junction Temperature       |                                       | -40  | 140  | °C   |
| G010 | Ts     | Storage Temperature Range            |                                       | -40  | 150  | °C   |

### **THERMAL DATA**

Operating conditions: VB1...3 = 4.5...40 V, VCC = 4.5...5.5 V or VB1...3 = VCC = 4...5.5 V

| Item | Symbol | Parameter                           | Conditions                                                       |      |      |      | Unit |
|------|--------|-------------------------------------|------------------------------------------------------------------|------|------|------|------|
| No.  |        |                                     |                                                                  | Min. | Тур. | Max. |      |
| T01  | Та     | Operating Ambient Temperature Range |                                                                  | -40  |      | 125  | °C   |
| T02  | Rthja  |                                     | surface mounted, thermal pad soldered to approx. 2 cm² heat sink |      | 40   |      | K/W  |

### 3-CHANNEL DIFFERENTIAL COLD LINE DRIVER



Rev B2, Page 4/12

### **ELECTRICAL CHARACTERISTICS**

Operating Conditions: VB1...3 = 4.5...32 V, VCC = 4...5.5 V, Tj = -40...140 °C, unless otherwise noted input level lo = 0...0.45 V, hi = 2.4 V...VCC, timing diagram see Fig. 2

| Item<br>No. | Symbol       | Parameter                                                                | Conditions                                           | Min. | Тур. | Max.  | Unit |
|-------------|--------------|--------------------------------------------------------------------------|------------------------------------------------------|------|------|-------|------|
| Gene        | ral          |                                                                          |                                                      |      |      |       |      |
| 001         | VBx          | Supply Voltage Range (Driver)                                            | for VB13 voltages below 7V use setup given in Fig. 1 | 4    |      | 40    | V    |
| 002         | I(VBx)       | Supply Current in VB13                                                   | Ax = Io                                              |      |      | 8     | mA   |
| 003         | I(VBx)       | Supply Current in VB13                                                   | Ax = hi                                              |      |      | 8     | mA   |
| 004         | I(VBx)       | Supply Current in VB1,<br>Outputs A12 Tri-State                          | ENA = Io,<br>V(A12) = -0.3(VB + 0.3 V)               |      |      | 4     | mA   |
| 005         | I(VBx)       | Supply Current in VB23, Outputs A36 Tri-State                            | ENA = Io,<br>V(A36) = -0.3(VB + 0.3 V)               |      |      | 2     | mA   |
| 006         | IO(Ax)       | Output Leakage Current                                                   | ENA = Io, V(Ax) = 0 VB                               | -50  |      | 50    | μA   |
| 007         | VCC          | Supply Voltage Range (Logic)                                             | for VB13 voltages below 7V use setup given in Fig. 1 | 4    |      | 5.5   | V    |
| 800         | I(VCC)       | Supply Current in VCC                                                    | ENA = hi, Ax = lo                                    |      |      | 10    | mA   |
| 009         | Vc()lo       | Clamp Voltage low at pins<br>VB13, A16, E16, DIFF,<br>ENA TNER, NER, VCC | I() = -10 mA, all other pins open                    | -1.2 |      | -0.35 | V    |
| 010         | Vc()hi       | Clamp Voltage high at pins<br>VB13, A16, E16, DIFF,<br>ENA TNER, NER     | I() = 1 mA, all other pins open                      | 41   |      | 64    | V    |
| 011         | I(VB)        | Supply Current in VB13                                                   | ENA = hi, f(E16) = 1 MHz                             |      |      | 50    | mA   |
| Drive       | r Outputs A1 | I6, Low-Side-action (x = 16)                                             |                                                      |      |      |       |      |
| 101         | Vs(Ax)lo     | Saturation Voltage low                                                   | I(Ax) = 10  mA, Ax = Iow                             |      |      | 0.2   | V    |
| 102         | Vs(Ax)lo     | Saturation Voltage low                                                   | I(Ax) = 30  mA, Ax = Iow                             |      |      | 0.4   | V    |
| 103         | Isc(Ax)lo    | Short circuit current low                                                | V(Ax) = 1.5 V                                        | 30   | 50   | 70    | mA   |
| 104         | Isc(Ax)lo    | Short circuit current low                                                | V(Ax) = VB, Ax = Iow                                 |      |      | 800   | mA   |
| 105         | Rout(Ax)     | Output resistance                                                        | VB = 1040 V, V(Ax) = 0.5 * VB                        | 40   | 75   | 100   | Ohm  |
| 106         | SR(Ax)lo     | Slew Rate low                                                            | VB = 40 V, CI(Ax) = 100 pF                           | 200  |      | 1000  | V/µs |
| 107         | Vc()lo       | Free Wheel Clamp Voltage low                                             | I(Ax) = -100  mA                                     | -1.4 |      | -0.5  | V    |
| Drive       | Outputs A1   | I6, High-Side-action (x = 16)                                            |                                                      |      |      |       |      |
| 201         | Vs(Ax)hi     | Saturation Voltage high                                                  | Vs(Ax)hi = VB - V(Ax), $I(Ax) = -10  mA$ , $Ax = hi$ |      |      | 0.2   | V    |
| 202         | Vs(Ax)hi     | Saturation Voltage high                                                  | Vs(Ax)hi = VB - V(Ax), $I(Ax) = -30  mA$ , $Ax = hi$ |      |      | 0.5   | V    |
| 203         | Isc(Ax)hi    | Short circuit current high                                               | V(Ax) = VB - 1.5 V, Ax = hi                          | -70  | -50  | -30   | mA   |
| 204         | Isc(Ax)hi    | Short circuit current high                                               | V(Ax) = 0 V, $Ax = hi$                               | -800 |      |       | mA   |
| 205         | Rout(Ax)hi   | Output resistance                                                        | VB = 1040 V, V(Ax) =0.5 * VB                         | 40   | 75   | 100   | Ohm  |
| 206         | SR(Ax)hi     | Slew Rate high                                                           | VB= 40 V, CI(Ax) = 100 pF                            | 200  |      | 1000  | V/µs |
| 207         | Vc(Ax)hi     | Free Wheel Clamp Voltage high                                            | I(Ax) = 100 mA,<br>VB = VCC = GND                    | 0.5  |      | 1.4   | V    |
| iC-xS       | witch CXS1,  | CXS6, A16, VB13                                                          |                                                      |      |      |       | -    |
| 301         | VBxs,on      | Turn-on threshold iC-xSwitch                                             |                                                      |      |      | 12.5  | V    |
| 302         | VBxs,off     | Turn-off threshold iC-xSwitch                                            |                                                      | 11   |      |       | V    |
| 303         | VBxs,hys     | Hysteresis                                                               |                                                      | 150  |      |       | mV   |
| 304         | Ron()        | On-resistance iC-xSwitch                                                 | VBx = 40 V, V(CXSx)= 20 V, I(Ax) = $\pm$ 350 mA      |      |      | 7     | Ohm  |
| 305         | Vth(Ax)hi    | Higher threshold hi                                                      | VBx = 12.5 40 V                                      |      |      | 73    | %VB  |
| 306         | Vth(Ax)lo    | Higher threshold lo                                                      | VBx = 12.5 40 V                                      | 63   |      |       | %VB  |
| 307         | Vth(Ax)hys   | Higher hysteresis                                                        | VBx = 12.5 40 V                                      | 100  |      |       | mV   |
| 308         | Vtl(Ax)hi    | Lower threshold hi                                                       | VBx = 12.5 40 V                                      |      |      | 40    | %VB  |
| 309         | Vtl(Ax)lo    | Lower threshold lo                                                       | VBx = 12.5 40 V                                      | 30   |      |       | %VB  |
| 310         | Vtl(Ax)hys   | Lower hysteresis                                                         | VBx = 12.5 40 V                                      | 100  |      |       | mV   |
| Switc       | h control    |                                                                          | •                                                    |      |      |       |      |
| 401         | tdmin        | Minimum time for line reflection                                         | VB = 12.5 40 V                                       | 100  | 200  | 300   | ns   |
| 402         | tXSon(Ax)    | On-time iC-xSwitch                                                       | f(Ex) = 500KHz, td = 800 ns, VB = 12.5 40 V          | 400  |      | 700   | ns   |

### 3-CHANNEL DIFFERENTIAL COLD LINE DRIVER



Rev B2, Page 5/12

### **ELECTRICAL CHARACTERISTICS**

Operating Conditions: VB1...3 = 4.5...32 V, VCC = 4...5.5 V, Tj = -40...140  $^{\circ}$ C, unless otherwise noted input level lo = 0...0.45 V, hi = 2.4 V...VCC, timing diagram see Fig. 2

| Item<br>No. | Symbol       | Parameter                                                 | Conditions                                                                             | Min. | Тур. | Max. | Unit |
|-------------|--------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|------|------|------|------|
| 403         | tXSon(Ax)    | On-time iC-xSwitch                                        | f(Ex) = 100 KHz, td = 4 μs, VB = 12.5 40 V                                             | 3.1  |      | 3.9  | μs   |
| CXS-g       | eneration C  | XS1, CXS6                                                 |                                                                                        |      |      |      | •    |
| 501         | V()          | Voltage at CXS1, CXS6                                     | VB = 12.5 40 V,I(CXSXx)= ± 100 μA                                                      | 47   | 50   | 53   | %VB  |
| 502         | lsc()lo      | Short circuit current lo                                  | VB = 12.5 40 V, CXSx = 0 V                                                             | 2    |      | 20   | mA   |
| 503         | Isc()hi      | Short circuit current hi                                  | VB = 12.5 40 V, CXSx = VB                                                              | -20  |      | -2   | mA   |
| 504         | Vc()hi       | Clamp Voltage hi                                          | I() = 10 mA, VB = VCC = GND                                                            | 0.5  |      | 1.4  | V    |
| 505         | Vth()hi      | higher turn-off threshold iC-xSwitch                      | VB = 12.5 40 V                                                                         |      |      | 73   | %VB  |
| 506         | Vth()lo      | higher turn-on threshold iC-xSwitch                       | VB = 12.5 40 V                                                                         | 63   |      |      | %VB  |
| 507         | Vth()hys     | Hysteresis                                                | Vth()hys = Vth()hi - Vth()lo                                                           | 100  |      |      | mV   |
| 508         | Vtl()hi      | lower turn-on threshold iC-xSwitch                        | VB = 12.5 40 V                                                                         |      |      | 40   | %VB  |
| 509         | Vtl()lo      | lower turn-off threshold iC-xSwitch                       | VB = 12.5 40 V                                                                         | 30   |      |      | %VB  |
| 510         | Vtl()hys     | Hysteresis                                                | Vtl()hys = Vtl()hi - Vtl()lo                                                           | 100  |      |      | mV   |
| Inputs      | E16, DIF     | F, ENA, TNER                                              |                                                                                        |      |      |      |      |
| 601         | Vt()hi       | Threshold Voltage high                                    |                                                                                        |      |      | 2.1  | V    |
| 602         | Vt()lo       | Threshold Voltage low                                     |                                                                                        | 0.8  |      |      | V    |
| 603         | Vt()hys      | Input Hysteresis                                          | Vt()hys = Vt()hi - Vt()lo                                                              | 200  | 400  | 800  | mV   |
| 604         | lpd()        | Pull-Down-Current                                         | V() = 0.8 V                                                                            | 10   |      | 80   | μA   |
| 605         | lpd()        | Pull-Down-Current                                         | $V() \le 40 V$                                                                         | 15   |      | 160  | μA   |
| 606         | II(E16)      | Leakage current at E16                                    | ENA = Io                                                                               | -10  |      | 10   | μΑ   |
| Suppl       | y Voltage C  | ontrol VB                                                 |                                                                                        |      |      |      |      |
| 701         | VBon         | Threshold Value at VB for Under-<br>voltage Detection on  | VB1 - VB2  &  VB2 - VB3  &  VB1 - VB3  < 0.75 V                                        |      |      | 3.95 | V    |
| 702         | VBoff        | Threshold Value at VB for Under-<br>voltage Detection off | VB1 - VB2  &  VB2 - VB3  &  VB1 - VB3  < 0.75 V                                        | 3    |      |      | V    |
| 703         | VBhys        | Hysteresis                                                | VBhys = VBon - VBoff                                                                   | 150  |      |      | mV   |
| Suppl       | y Voltage D  | ifference Control VB13                                    |                                                                                        |      |      |      |      |
| 801         | Vth(VBx)     | Threshold Condition for Supply Voltage Difference Control | $\Delta V(VBx)$ = MAX ( VB1 - VB2  ,  VB2 - VB3  ,  VB1 - VB3  ) NER $\Rightarrow$ low | 0.75 |      | 1.85 | V    |
| Suppl       | y Voltage C  | ontrol VCC                                                |                                                                                        |      |      |      | ,    |
| 901         | VCCon        | Threshold Value at VCC for Undervoltage Detection on      |                                                                                        |      |      | 3.95 | V    |
| 902         | VCCoff       | Threshold Value at VCC for Undervoltage Detection off     |                                                                                        | 3    |      |      | V    |
| 903         | VCChys       | Hysteresis                                                | VCChys = VCCon - VCCoff                                                                | 100  |      |      | mV   |
| Tempe       | eratur Conti | rol                                                       |                                                                                        |      |      |      |      |
| A01         | Toff         | Thermal Shutdown Threshold                                | increasing temperature                                                                 | 145  |      | 175  | °C   |
| A02         | Ton          | Thermal Lock-on Threshold                                 | decreasing temperature                                                                 | 130  |      | 165  | °C   |
| A03         | Thys         | Thermal Shutdown Hysteresis                               | Thys = Ton - Toff                                                                      | 4    | 12   |      | °C   |
| Error       | Output NER   |                                                           |                                                                                        |      |      |      |      |
| B01         | Vs()         | Saturation Voltage low at NER                             | I(NER) = 5 mA, NER = Io                                                                |      |      | 0.6  | V    |
| B02         | Isc()        | Short Circuit Current low at NER                          | V(NER) = 240 V, NER = Io                                                               | 6    | 12   | 20   | mA   |
| B03         | IO()         | Leakage Current at NER                                    | V(NER) = 0 VVB, NER = hi                                                               | -10  |      | 10   | μA   |
| B04         | VCC          | Supply Voltage for NER function                           | I(NER) = 5 mA, NER = Io,<br>Vs(NER) < 0.6 V                                            | 2.9  |      |      | V    |



Rev B2, Page 6/12

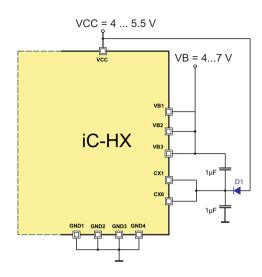



Figure 1: Operating setup for VBx voltages below 7V using additional diode D1 (1N4148 or equivalent)

### **OPERATING REQUIREMENTS**

Operating Conditions: VB1...3 = 4.5...32 V, VCC = 4...5.5 V, Tj = -40...140 °C, unless otherwise noted input level lo = 0...0.45 V, hi = 2.4 V...VCC, timing diagram see fig. 2

| Item   | Symbol     | Parameter                                                                                    | Conditions                                                                          |      |      | Unit |
|--------|------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------|------|------|
| No.    |            |                                                                                              |                                                                                     | Min. | Max. |      |
| Time D | elays      |                                                                                              |                                                                                     |      |      |      |
| 1001   | tplh(E-A)  | Propagation Delay Ex ⇒ Ax                                                                    | DIFF = Io, CI() = 100 pF                                                            |      | 400  | ns   |
| 1002   | tphI(E-A)  | Propagation Delay Ex ⇒ Ax                                                                    | DIFF = Io, CI() = 100 pF                                                            |      | 200  | ns   |
| 1003   | ∆tplh(Ax)  | Propagation Delay Skew $ A1 \Rightarrow A2 $ , $ A3 \Rightarrow A4 $ , $ A5 \Rightarrow A6 $ | DIFF = hi, CI() = 100 pF                                                            |      | 100  | ns   |
| 1004   | ∆tphl(Ax)  | Propagation Delay Skew $ A1 \Rightarrow A2 $ , $ A3 \Rightarrow A4 $ , $ A5 \Rightarrow A6 $ | DIFF = hi, CI() = 100 pF                                                            |      | 100  | ns   |
| 1005   | tplh(ENA)  | Propagation Delay ENA ⇒ Ax                                                                   | Ex = hi, DIFF = lo, CI() = 100 pF,<br>RI(Ax, GND) = $5 \text{ k}\Omega$             |      | 300  | ns   |
| 1006   | tplh(ENA)  | Propagation Delay ENA ⇒ Ax                                                                   | Ex = Io, DIFF = Io, CI() = $100 \text{ pF}$ ,<br>RI(VB, Ax) = $100 \text{ k}\Omega$ |      | 200  | ns   |
| 1007   | tphI(ENA)  | Propagation Delay ENA ⇒ Ax                                                                   | Ex = Io, DIFF = Io, RI(VB, Ax) = $5 \text{ k}\Omega$                                |      | 500  | ns   |
| 1008   | tphI(ENA)  | Propagation Delay ENA ⇒ Ax                                                                   | Ex = hi, DIFF = lo, RI(Ax, GND) = $5 \text{ k}\Omega$                               |      | 500  | ns   |
| 1009   | tphI(DIFF) | Propagation Delay DIFF ⇒ A2, A4, A6                                                          | E1, E3, E5 = hi, Cl() = 100 pF                                                      |      | 250  | ns   |
| 1010   | tplh(DIFF) | Propagation Delay DIFF ⇒ A2, A4, A6                                                          | E1, E3, E5 = Io, CI() = 100 pF                                                      |      | 400  | ns   |
| 1011   | tplh(TNER) | Propagation Delay TNER ⇒ NER                                                                 | RI(VB, NER) = $5 \text{ k}\Omega$ , CI() = $100 \text{ pF}$                         |      | 2    | μs   |
| 1012   | tpoff(VBx) | Turn-off delay, VBx $\Rightarrow$ NER                                                        | VBx - VBy   > Vth(VBx), x<>y, x, y = 13                                             | 0.3  | 3    | μs   |

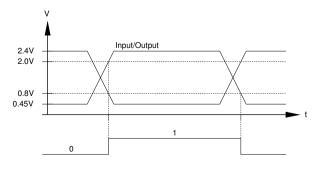



Figure 2: Reference levels for delays

### 3-CHANNEL DIFFERENTIAL COLD LINE DRIVER



Rev B2, Page 7/12

### **DESCRIPTION**

Line drivers for control engineering couple TTL- or CMOS-compatible digital signals with 24 V systems via cables. The maximum permissible signal frequency is dependent on the capacitive load of the outputs (cable length) or, more specifically, the power dissipation in iC-HX resulting from this. To avoid possible short circuiting the drivers are current-limited and shutdown with excessive temperature.

When the output is open the maximum output voltage corresponds to supply voltage VB (with the exception of any saturation voltages). Figure 3 gives the typical DC output characteristic of a driver as a function of the load. The differential output resistance is typically 75  $\Omega$  over a wide voltage range.

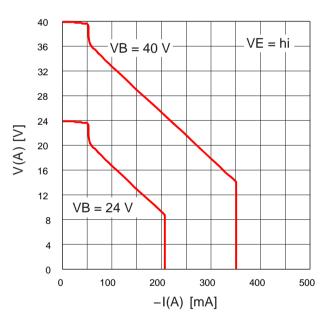



Figure 3: Load dependence of the output voltage (High-side stage)

Each open-circuited input is set to low by an internal pull-down current source; an additional connection to GND increases the device's immunity to interference. The inputs are TTL- and CMOS-compatible. Due to their high input voltage range, the inputs can also be set to high-level by applying VCC or VB.

#### **LINE EFFECTS**

In PLC systems data transmission using 24 V signals usually occurs without a matched line termination. A mismatched line termination generates reflections which travel back and forth if there is also no line adaptation on the driver side of the device. With rapid pulse trains transmission is disrupted. In iC-HX, however, fur-

ther reflection of back travelling signals is prevented by an integrated impedance network, as shown in Figure 4.

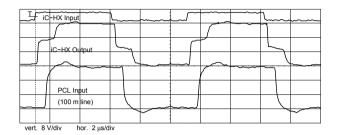



Figure 4: Reflections caused by a mismatched line termination

During a pulse transmission the amplitude at the iCoutput initially only increases to half the value of supply voltage VB as the internal driver resistance and characteristic line impedance form a voltage divider. A wave with this amplitude is coupled into the line and experiences after a delay a total reflection at the highimpedance end of the line. At this position, the reflected wave superimposes with the transmitted wave and generates a signal with the double wave amplitude at the receiving device.

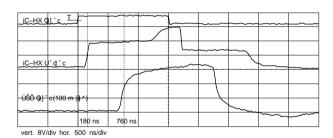



Figure 5: Pulse transmission and transit times

After a further delay, the reflected wave also increases the driver output to the full voltage swing. iC-HX's integrated impedance adapter prevents any further reflection and the achieved voltage is maintained along and at the termination of the line.

A mismatch between iC-HX and the transmission line influences the level of the signal wave first coupled into the line, resulting in reflections at the beginning of the line. The output signal may then have a number of graduations. Voltage peaks beyond VB or below GND are capped by integrated diodes. By this way, transmission lines with a characteristic impedance of between 30 and 140  $\Omega$  thus permit correct operation of the device.

#### iC-xSwitch

Power dissipation in the driver occurs with each switch-

### 3-CHANNEL DIFFERENTIAL COLD LINE DRIVER



Rev B2, Page 8/12

ing edge when over the double signal run time the internal resistor forms a voltage divider with the characteristic line impedance and is proportional to the length of the connected line and the switching frequency. If the internal resistor is perfectly matched to the characteristic line impedance, the voltage divider generates half the supply voltage at the line input, only supplying the full voltage when an echo occurs. iC-HX exploits this behavior of the open line in order to reduce the power dissipation in the driver. A switch is triggered by applying the halved low-impedance supply voltage, buffered with capacitors, to the line input and terminated by applying the internal resistor shortly before the echo occurs. Power dissipation occurs regardless of the length of the connected line in the time between the application of the resistor to the line and the beginning of the echo. In order to control this process iC-HX must recognize the length of the connected line. The line is measured using an integrated procedure which evaluates the line echo. This principle of power dissipation reduction only functions when a single wave travels along the line. The maximum transmission frequency with a reduced power dissipation is directly proportional to the line length. If the transmission frequency is too high for the line length, iC-xSwitch is no longer used, resulting in increased power dissipation in the driver. The required halved supply voltage is generated internally in the chip and must be buffered by capacitors. On a rising edge current flows from the capacitor into the line and back into the capacitor on a falling edge. With the differential operation of two lines the currents flow from one line to the other and back again.

Figure 6 shows the three switches, the integrated resistor to match the characteristic line impedance and the connected line. VB is the positive power supply and VB/2 is the half of it. The control of the switches depends on the input signals of the device and the length of the connected line. With all enable-signals at lo-level the output A is high impedance (tristate).

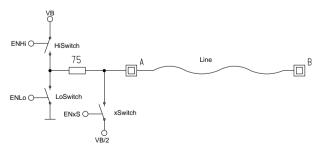



Figure 6: Circuit diagram with switches and line

Figures 7 and 8 show the input signal V(E), the switch trigger signals derived from this and the voltage curve at the beginning (A) and end (B) of the line at intervals t1 to t8. Figure 7 shows operation without iC-Xswitch. Power

dissipation  $\mathrm{P_D(HX)}$  occurs at intervals t1 to t4 and t5 to t8. Figure 8 describes operation with iC-xSwitch; power dissipation  $\mathrm{P_D(HX)}$  occurs between t3 and t4 and t7 and t8. The mean power dissipation is significant for the warming of the device, which is proportional to the duty cycle. This results in a reduced power dissipation (at the same frequency), meaning there is less power dissipation with a shorter line or through the use of iC-xSwitch with a long line, for example.

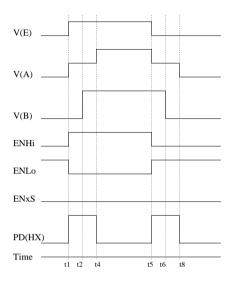



Figure 7: Power dissipation  ${\rm P_D(HX)}$  without iC-xSwitch

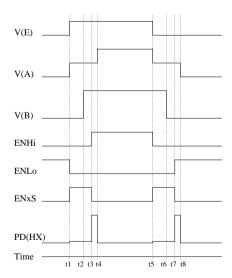



Figure 8: Power dissipation  $\mathrm{P}_\mathrm{D}(\mathrm{HX})$  with iC-xSwitch

An example for the power dissipation is given in figure 9. When xSwitch is not used by setting NXS to high, the iC-HX behaves like the iC-DL.

### 3-CHANNEL DIFFERENTIAL COLD LINE DRIVER



Rev B2, Page 9/12

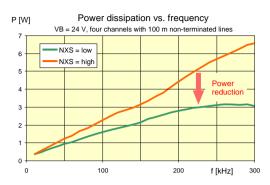



Figure 9: Power dissipation with and without xSwitch-Mode

### **DEMO BOARD**

iC-HX is in a QFN28 package and comes with a demo board for test purposes. Figures 10 to 11 shows the wiring and the top of the demo board.

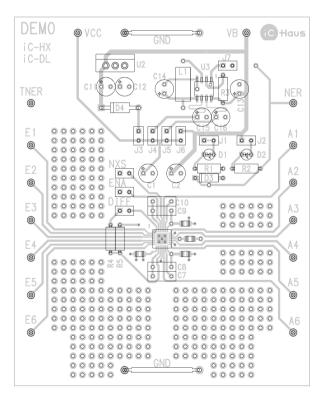



Figure 10: Demo-Board ,top view

# **iC-HX** 3-CHANNEL DIFFERENTIAL COLD LINE DRIVER



Rev B2, Page 10/12

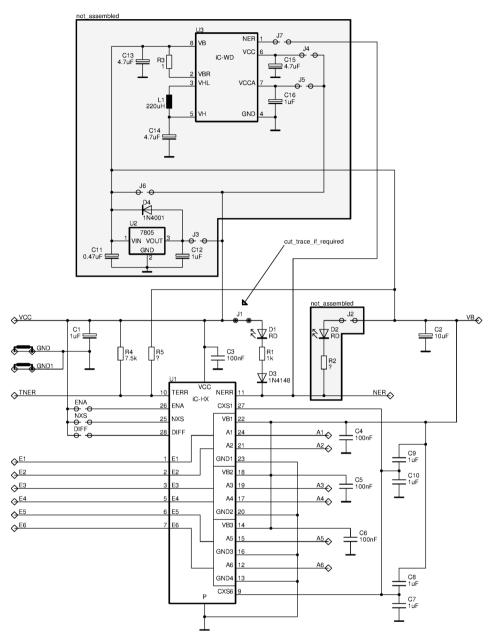



Figure 11: Circuit diagram of the demo board

# **iC-HX**3-CHANNEL DIFFERENTIAL COLD LINE DRIVER



Rev B2, Page 11/12

### **REVISION HISTORY**

| Rel. | Rel. Date* | Chapter                       | Modification                                                                 | Page |
|------|------------|-------------------------------|------------------------------------------------------------------------------|------|
| B2   | 2016-07-28 |                               | Label "preliminary" removed                                                  | 1    |
|      |            | ELECTRICAL<br>CHARACTERISTICS | Items 001, 007: Conditions for operation at VBx voltages below 7V introduced | 4    |
|      |            | ELECTRICAL<br>CHARACTERISTICS | Figure 1 introduced showing operating setup for VBx voltages below 7 V       | 6    |
|      |            | OPERATING CONDITIONS          | Item I012: Parameter and condition added                                     | 6    |

iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website <a href="https://www.ichaus.com/infoletter">www.ichaus.com/infoletter</a>; this letter is generated automatically and shall be sent to registered users by email

Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials.

The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

<sup>\*</sup> Release Date format: YYYY-MM-DD

# **iC-HX**3-CHANNEL DIFFERENTIAL COLD LINE DRIVER



Rev B2, Page 12/12

### **ORDERING INFORMATION**

| Туре                            | Package         | Order Designation              |
|---------------------------------|-----------------|--------------------------------|
| iC-HX<br>iC-HX Evaluation Board | QFN28 5 x 5 mm² | iC-HX QFN28<br>iC-HX EVAL HX2D |

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Tel.: +49 (0) 61 35 - 92 92 - 0
Am Kuemmerling 18 Fax: +49 (0) 61 35 - 92 92 - 192
D-55294 Bodenheim Web: http://www.ichaus.com
GERMANY E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales\_partners