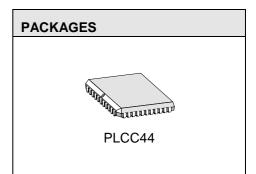
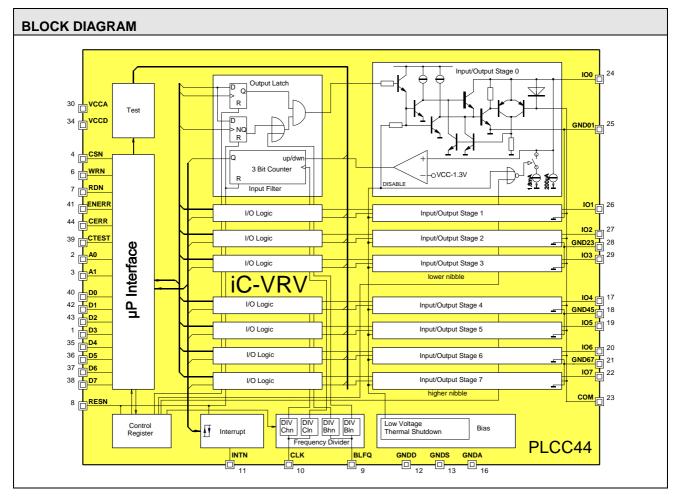
iC-VRV

BIDIRECTIONAL µP INTERFACE TO 24V


Rev A2, Page 1/12


FEATURES

- ◆ 2 x 4 bidirectional input/output stages at 24 V
- ♦ Input/output mode programmable for each 4 bits
- Guaranteed low-side driving capability of 100 mAdc and 500 mApeak for pulse load
- Short-circuit-proof driver with high electric strength up to 48 V
- Low saturation voltage of 0.4 V at 10 mA and 1.5 V at 500 mA
- Programmable pull-down current sources
- Built-in free-wheeling diodes with externally accessible common cathode
- Flashing function for the outputs
- Programmable digital input filters with externally adjusted filtering times
- Bus capability via high-speed microprocessor interface
- ♦ Programmable interrupt output
- Shutdown at overtemperature and low voltage

APPLICATIONS

 Dual quad low-side driver as bidirectional μP interface with digital filtering in 24 V industrial applications

Rev A2, Page 2/12

DESCRIPTION

iC-VRV is an 8-fold low-side driver with integrated control logic which is divided internally into two mutually independent blocks (nibbles).

In the input mode, ports IO0 to IO7 can be used to record logical levels. In this process, a programmable pull-down current (200 μ A or 2 mA) sets a defined level and functions as the biasing current for switching contacts. The stages programmed as outputs can drive any desired loads (e. g. lamps, long cables, relays) at a continuous current of 100 mA or 500 mA in pulse operation. The free-wheeling currents created upon each stage turn-off are discharged through the integrated free-wheeling diodes to a voltage applied externally to the COM pin; a circuit with a Zener diode is also possible.

In the event of a short circuit, a protective circuit breaker ensures that the output stage affected does not just simply switch off but is instead clocked as a function of the load. As a result, the current assumes a low average value. The output stage is ready for operation immediately just as soon as the cause of the short circuit has been eliminated.

The shutdown at overtemperature protects the IC against thermal destruction by causing the output stages to turn off and the pull-down currents to be reduced from 2 mA to 200 μ A. This shutdown is also triggered in case of undervoltage at VCC.

Due to the microprocessor interface the iC-VRV can be operated directly on a bus system. The interface consists of the data bits D0 to D7 and the associated control signals A0, A1, CSN, WRN and RDN. The signal CLK clocks the implemented digital input filter and BLFQ clocks the programmed flashing function. In the event of a signal change of the I/O pins programmed as inputs, an interrupt signal can be generated at output INTN.

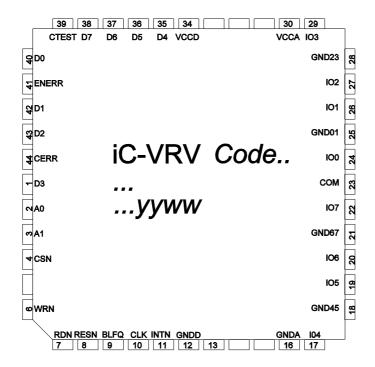
Activating the input RESN resets the initial condition.

Chip programming is conducted via four addresses at A0 and A1. During this programming, presettings for flashing frequencies, filtering times, interrupt control, pull-down currents and input/output mode, etc. are stored in two registers (CONTROL WORD1+2).

All inputs and outputs are protected with diodes against destruction due to ESD.

iC-VRV

BIDIRECTIONAL µP INTERFACE TO 24V



Rev A2, Page 3/12

PACKAGES PLCC44 to JEDEC Standard

PIN CONFIGURATION PLCC44

(top view)

PIN FUNCTIONS PLCC44

No.	Name	Function	Description	No.	Name	Function	Description
1	D3	В	Bus Data Bit 3	23	COM		Diodes, common cathode
2	A0	I	Address	24	IO0	В	I/O Stage 0
3	A1	1	Address	25	GND01		Ground Stage 0+1
4	CSN	1	Chip Select	26	IO1	В	I/O Stage 1
5	n.c.		•	27	102	В	I/O Stage 2
6	WRN	1	Write Enable	28	GND23		Ground Stage 2+3
7	RDN	1	Read Enable	29	103	В	I/O Stage 3
8	RESN	1	Reset	30	VCCA		+5 V Supply (analog section)
9	BLFQ	i	Clock, flashing function	31	n.c.		to the property (amount greening)
10	CLK	1	Clock, filter function	32	n.c.		
11	INTN	0	Interrupt Report	33	n.c.		
12	GNDD	•	Digital Ground	34	VCCD		+5 V Supply (digital section)
13	n.c.		- ·9·····	35	D4	В	Bus Data Bit 4
14	n.c.			36	D5	В	Bus Data Bit 5
15	n.c.			37	D6	В	Bus Data Bit 6
16	GNDA		Analog Ground	38	D7	В	Bus Data Bit 7
17	104	В	I/O Stage 4	39(*)	CTEST	_	240 2414 211 1
18	GND45	_	Ground Stage 4+5	40	D0	В	Bus Data Bit 0
19	105	В	I/O Stage 5	41(*)	ENERR	_	240 2414 211 0
20	106	В	I/O Stage 6	42	D1	В	Bus Data Bit 1
21	GND67	_	Ground Stage 6+7	43	D2	В	Bus Data Bit 2
22	107	В	I/O Stage 7	44(x)	CERR	-	240 2414 211 2
		-	• • • • • • • • • • • • • • • • • •	1 1(X)	0=		

^{*:} pin needs external wiring to Ground

Function: I = Input, O = Output, B = bidirectional

x: pin should left open

Rev A2, Page 4/12

PROGRAMMING

Sele	ction	of functions	1								
		Data Word	D7D0								
		higher nib	ble			lower nibble					
		Selected I/	O Stage fur	nction:							
Addr	ess	Input		Output		Input		Output			
A 1	A0	Write	Read	Write	Read	Write	Read	Write	Read		
0	0	Test Pattern	IR Inputs	Outputs	Outputs	Test Pattern	IR Inputs	Outputs	Outputs		
0	1	IR Enable	IR Enable	Pulse Enable	Pulse Enable	IR Enable	IR Enable	Pulse Enable	Pulse Enable		
1	0	Control Word 2	Inputs	Control Word 2	Feedback I/O Stages	Control Word 2	Inputs	Control Word 2	Feedback I/O Stages		
1	1	Control Word 1	Control Word 1	Control Word 1	Control Word 1	Control Word 1	Control Word 1	Control Word 1	Control Word 1		

Reading the inputs or the output feedback (IO7..0 to D7..0)

I/O stage with input function: A high level at IOx generates a high signal at Dx (selection of functions: read inputs) during the course of the digital hysteresis.

I/O stage with output function: A high level at IOx generates a low signal at Dx (selection of functions: read feedback of the outputs).

The inversion while reading back the outputs (I/O stage with output function) occurs so that the same signal is applied to Dx as was programmed for switching the output stage on or off, for example: switching on the final stage with Dx = high results in low level at IOx. After the digital hysteresis ends, Q becomes low, the microprocessor interface inverts this message and a high signal can be read back via Dx. The microprocessor can check the output state in this manner.

Test

The test circuit consists of registers which can be set via the microprocessor interface (test pattern). Its content is applied via constantly active OR gates to the counting direction inputs UP/DOWN (D7..0 to UP/DOWN7..0). In response to a reset (low signal at RESN) the registers are set to low; as a result, there is no effect on the UP/DOWN inputs.

In the test mode (control word 2, bit 2 and 6 at high) the comparators of the I/O stages are switched off and only the test registers continue to operate the UP/DOWN inputs. Any desired input signals can be entered to test all digital functions; the microprocessor can also conduct a system test in this manner.

Interrupt enable

The interrupt generation can be activated separately for every I/O stage with input function. The interrupt enable is programmed via the data word DO..7 (function selection IR enable: 1 = stage relevant, 0 = stage not relevant). If a signal change is recognized for an I/O stage with input function - after the digital hysteresis due to change at Qx - and if this stage is enabled for interrupt generation, this is indicated with INTN = low. The interrupt message as well as the interrupt register which shows the stages with signal changes are reset via control word 2 (writing bit 0 = 1 is sufficient; bit 0 = 0 is set by the chip automatically).

Rev A2, Page 5/12

Signal changes which would be relevant for an interrupt generation could occur in the read-out phase following an interrupt message. These signal changes are lost when the interrupt register is deleted. As an alternative, the read-out of the interrupt register is possible (functional selection: read IR inputs). The registers can then be reset separately by blocking the IR enable for each reporting stage singly and then releasing it (functional selection: IR enable).

Filter periods

The input comparator of each I/O stage switches the counting direction of a 3 bit counter. The counter output Q does not change until the final status is reached (to high for high level at IOx, to low for low level at IOx if constantly applied during the filter period).

The counter is clocked externally (pin CLK); the divisor for the clock frequency can be programmed separately for both nibbles. A low signal at reset input RESN resets the counters to the value 3. Due to the digital hysteresis, the change of an input signal is therefore not recognized until the selected filter period has elapsed.

Pulse enable and pulse times

The flashing or pulsing function can be switched on separately for each I/O stage with output function. The programming of the divisors for the flashing frequency input BLFQ (control word 1, bits 0,1 and 4,5) is conducted for each nibble. The clock signal at BLFQ is transfered with the slope of CLK (synchronized). For this reason the clock frequency for CLK must be higher than the clock frequency for BLFQ, e. g. 2 MHz for CLK and 50 Hz for BLFQ.

Control W	Control Word 1							
	higher nibble			lower nibble				
Bit Name	7 FH0	6 FH1	5 PH0	4 PH1	3 FL0	2 FL1	1 PL0	0 PL1

Control	Control Word 1 (lower nibble)									
Filtering	Time			Flashing Pulse Duration						
Bit 3 FLO	Bit 2 FL1			Bit 1 PLO	Bit 0 PL1					
0 1 0 1	0 0 1 1	14.5 * CLK 896.5 * CLK 3584.5 * CLK 7168.5 * CLK	± 1 * CLK ± 64 * CLK ± 256 * CLK ± 512 * CLK	0 1 0 1	0 0 1 1	BLFQ BLFQ * 2 BLFQ * 4 BLFQ * 16				

Contro	l Word 1	(higher nibble)						
Filtering Time Flashing Pulse Duration								
Bit 7 FHO	Bit 6 FH1			Bit 5 PHO	Bit 4 PH1			
0 1 0 1	0 0 1 1	14.5 * CLK 896.5 * CLK 3584.5 * CLK 7168.5 * CLK	± 1 * CLK ± 64 * CLK ± 256 * CLK ± 512 * CLK	0 1 0	0 0 1 1	BLFQ BLFQ * 2 BLFQ * 4 BLFQ * 16		

iC-VRV

BIDIRECTIONAL µP INTERFACE TO 24V

Rev A2, Page 6/12

Control Word 2								
	higher nibble				lower nibble			
Bit Name	7 NIOH	6 TSTH	5 IBH	4 not used	3 NIOL	2 TSTL	1 IBL	0 EOI

Control V	Vord 2 (lo	wer nibble)					
Interrupt							
Bit 0 (EOI)	0	Interrupt is not cancelled Clearing Interrupt					
Current S	Current Sources at I/O Pins						
Bit 1 (IBL)	Pull-Down Current 200 μA Pull-Down Current 2 mA						
Test							
Bit 2 (TSTL)	0	Feedback of I/O stages active (OR gated with test pattern) Test pattern activated, feedback of I/O stages switched off					
Input/Outp	Input/Output Mode						
Bit 3 (NIOL)	Input Mode Output Mode						

Control V	Vord 2 (hi	gher nibble)					
Bit 4	-	not used					
Current S	Current Source at I/O Pins						
Bit 5 (IBH)	· · · · · · · · · · · · · · · · · · ·						
Test							
Bit 6 (TSTH)	0	Feedback of I/O stages active (OR gated with test pattern) Test pattern activated, feedback of I/O stages switched off					
Input/Outp	Input/Output Mode						
Bit 7 0 Input Mode Output Mode							

Rev A2, Page 7/12

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed. Absolute Maximum Ratings are no Operating Conditions. Integrated circuits with system interfaces, e.g. via cable accessible pins (I/O pins, line drivers) are per principle endangered by injected interferences, which may compromise the function or durability. The robustness of the devices has to be verified by the user during system development with regards to applying standards and ensured where necessary by additional protective circuitry. By the manufacturer suggested protective circuitry is for information only and given without responsibility and has to be verified within the actual system with respect to actual interferences.

Item	Symbol	Parameter	Conditions		Fig.		•	Unit
						Min.	Max.	
G001	VCCA VCCD	Supply Voltage				-0.3	6	V
G201	V(COM)	Voltage at COM				-0.3	49	V
G202	Vact(IO)	Voltage at IOx	IOx= lo (* see belo	w)		-0.3	49	V
G203	Idc(COM)	Current in COM				-500	0	mA
G204	lpk(COM)	Peakcurrent in COM	⊺= 2ms, T≥ 2s		2	-1000	-	mA
G205	Isc(COM)	Free-Wheeling Current in COM				-1.3		Α
G206	Idc(COM)	Current in IOx				-1		mA
G207	lpk(IOx)	Peakcurrent in IOx	IOx= Io, T= 2ms, T	≥ 2s	2	-1	600	mA
G208	lpsc (lox)	Peakcurrent in IOx	IOx= lo, Overload	current protection		-1.3		А
G301	V(IOx)	Voltage at IO03, IO47	IBL= 0, IBH= 0 (current source 20	0μΑ)		-0.3	49	V
G302	V(IOx)	Voltage at IO03, IO47	IBL= 1, IBH= 1			-0.3	26	V
			(current source 2mA)	T= 2ms, T≥ 2s		-0.3	49	V
G401	lmx (VCCD)	Current in VCCD, GNDD				-50	50	mA
G402	Ic()	Current in Clamping Diodes at CSN, WRN, RDN, A0, A1, D07, RESN, CLK, BLFQ	D07 set to inputs			-20	20	mA
G402	I()	Current in D07,INTN	D07 set to output	S			25	mA
G404	llu()	Peakcurrent in CSN, WRN, RDN, A0, A1, D07, RESN, CLK, BLFQ, INTN (Latch-Up Strength)	pulse duration ≤ 10	Dμs		-100	100	mA
EG1	Vd()	ESD Susceptibility, all Inputs and Outputs	HBM 100pF discha	arged through 1.5kΩ			2	kV
TG1	Tj	Junction Temperature				-40	150	°C
TG2	Ts	Storage Temperature				-40	150	°C

^(*) IOx= lo : pin set to output, active low, $x \in 0..7$

THERMAL DATA

Operating Conditions: VCC= VCCA= VCCD= 5V ±10%

Item	Symbol	Parameter	Conditions	Fig.				Unit
					Min.	Тур.	Max.	
T1	Та	Operating Ambient Temperature Range			0		70	°C
T2	. ,	Thermal Resistance Chip to Ambient	PLCC44 surface mounted on PCB			55		K/W

Rev A2, Page 8/12

ELECTRICAL CHARACTERISTICS

ltem	Symbol	Parameter	Conditions	Tj	Fig.				Unit
				C		Min.	Тур.	Max.	
Total	Device								
001	VCCA VCCD	Permissible Supply Voltage Range				4.5		5.5	V
002	I(VCCA)	Supply Current in VCCA, power section	IO07= lo, unloaded	0 27 70 125		5 5 5 5		65 60 55 55	mA mA mA
003	I(VCCD)	Supply Current in VCCD, digital section	all logic inputs lo= 0V or hi= VCC			0		10	mA
004	I(VCCD)	Supply Current in VCCD, digital section	all logic inputs lo= 0.8V				80		mA
005	I(VCCD)	Supply Current in VCCD, digital section	all logic inputs lo= 2.0V				100		mA
Bias,	Thermal S	hutdown and Low Voltage Dete	ction						
101	VCCon	Turn-on Threshold VCC				3.6	4	4.4	V
102	VCCoff	Undervoltage Threshold at VCC	decreasing Supply VCC			3.5	3.9	4.3	V
103	VCChys	Hysteresis	VCChys= VCCon-VCCoff			40	100	250	mV
104	Toff	Thermal Shutdown Threshold				120	135	150	°C
105	Thys	Thermal Shutdown Hysteresis	Thys= Toff - Ton			4	8	12	°C
I/O St	ages: Low	-side Driver							
201	IIk(COM)	Leakage Current in COM	V(COM)= 25V, V(IOx)= 0V					100	μΑ
202	Vf(COM)	Forward Voltage of the Free- Wheeling Diodes	Vf()= V(IOx)-V(COM); I(IOx¬COM)= 100mA, IOx= hi or set to Inputs			0.5		1.5	V
203	Vs(IO)	Saturation Voltage lo at IOx	I(IOx)= 10mA, IO07= lo		1			0.4	V
204	Vs(IO)	Saturation Voltage lo at IOx	I(IOx)= 100mA, IO07= Io		1			0.6	V
205	Vs(IO)	Saturation Voltage lo at IOx for pulse load	I(IOx)= 500mA, IO07= Io, ⊺= 2ms, T≥ 2s		1			1.5	V
206	loff(IO)	Threshold Current in IOx for Overcurrent Cut-off	IOx= Io, V(IOx)= 025V			0.5		1.3	Α
207	Ion(IO)	Free-Wheeling Current I(IOx~COM) for Cut-off release	IOx= Io, V(IOx)= 025V			0.1		20	mA
208	f(IO)	Cut-off Oscillation Frequency	depends on Load			0.1		20	MHz
209	lav(IO)	Mean Current in IOx during Cut-off	IOx= Io, V(IOx)= 025V			50		700	mA

Rev A2, Page 9/12

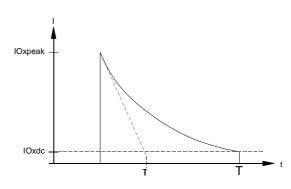
ELECTRICAL CHARACTERISTICS

Operating Conditions: VCC= VCCA= VCCD= 5V ±10%, Tj= 0..125℃, unless otherwise noted

ltem	Symbol	Parameter	Conditions	Tj	Fig.				Unit
				°C		Min.	Тур.	Max.	
I/O St	ages: Con	nparator					,		
301	Idwn(IO)	Pull-down Current in IOx	V(IOx)= 348V, IBL= 0, IBH= 0, IO07= hi or set to Inputs			120	200	280	μΑ
302	Idwn(IO)	Pull-down Current in IOx	V(IOx)= 325V, IBL= 1, IBH= 1, IO07= hi or set to Inputs			1.4	2	2.6	mA
303	V0(IO)	Open-Circuit Voltage at IOx	IOx open, IO07= hi or set to Inputs					1	V
304	Vt()hi	Threshold Voltage hi at IOx						4.6	V
305	Vt()lo	Threshold Voltage lo at IOx				3			V
μP-In	terface, I/C	D-Logic, Frequency Divider, Interr	upt						
401	IIk(Dx)	Leakage Current in Dx	D07 set to Inputs			-5		5	μΑ
402	llk(Dx)	Leakage Current in Schmitt Trigger Inputs CSN, WRN, RDN, A0, A1, RESN, CLK, BLFQ				-1		1	μΑ
403	Vt()hi	Threshold Voltage hi at Schmitt Trigger Inputs CSN, WRN, RDN, A0, A1, RESN, CLK, BLFQ, D07	D07 set to Inputs					2.3	V
404	Vt()lo	Threshold Voltage Io at Schmitt Trigger Inputs CSN, WRN, RDN, A0, A1, RESN, CLK, BLFQ, D07	D07 set to Inputs			0.7			V
405	Vt()hys	Hysteresis at Schmitt Trigger Inputs CSN, WRN, RDN, A0, A1, RESN, CLK, BLFQ, D07	Vt()hys= Vt()hi-Vt()lo; D07 set to Inputs			0.3			V
406	Vs()hi	Saturation Voltage hi at INTN	Vs()hi= VCCD-V(INTN); INTN=hi, I(INTN)= -100μA					0.2	V
407	Vs()hi	Saturation Voltage hi at INTN	Vs()hi= VCCD-V(INTN); INTN=hi, I(INTN)= -2mA					0.8	V
408	Vs()lo	Saturation Voltage lo at INTN	INTN= lo, l(INTN)= 100µA					0.2	V
409	Vs()lo	Saturation Voltage lo at INTN	INTN= Io, I(INTN)= 2mA					0.49	V
410	Vs(Dx)hi	Saturation Voltage hi at Dx	Vs(Dx)hi= VCCD-V(Dx); Dx= hi, I(Dx)= -100μA					0.2	V
411	Vs(Dx)hi	Saturation Voltage hi at Dx	Vs(Dx)hi= VCCD-V(Dx); Dx= hi, I(Dx)= -4mA					0.8	V
412	Vs(Dx)lo	Saturation Voltage lo at Dx	Dx= Io, I(Dx)= 100μA					0.2	V
413	Vs(Dx)lo	Saturation Voltage lo at Dx	Dx= lo, I(Dx)= 4mA					0.49	V
414	Vc()hi	Clamp Voltage hi at CSN, WRN, RDN, A0, A1, RESN, CLK,BLFQ, D07, INTN, CERR	Vc()hi= V()-VCC, I()= 20mA			0.4		2.5	V
415	Vc()lo	Clamp Voltage Io at CSN, WRN, RDN, A0, A1, RESN, CLK, BLFQ, D07, INTN, CERR	I()= -20mA			-1.8		-0.4	V

Rev A2, Page 10/12

ELECTRICAL CHARACTERISTICS


Operating Conditions: VCC= VCCA= VCCD= 5V ±10%, Tj= 0..125℃, unless otherwise noted

Item	Symbol	Parameter	Conditions	Tj	Fig.				Unit
				${\mathfrak C}$		Min.	Тур.	Max.	
Switc	hing Char	acteristics							
501	tc(CLK)	Permissible Cycle Duration CLK				400			ns
502	tw(CLK)	Permissible Pulse Width lo at CLK				200			ns
503	tc(BLFQ)	Permissible Cycle Duration BLFQ				100			ms
504	tw(BLFQ)	Permissible Pulse Width lo at BLFQ				50			ms
505	tphl()	Propagation Delay until IOx= lo	Write Cycle, WRN: hi→lo					2	μs
506	tplh()	Propagation Delay until IOx= off	Write Cycle, WRN: hi→lo					3	μs
507	tp()Ion	Current Source Enable Time at IOx	Write Cycle, WRN: hi→lo					5	μs
508	tp()loff	Current Source Disable Time at IOx	Write Cycle, WRN: hi→lo					5	μs
509	tp(IOx→ up/dwn)	Propagation Delay Input IOx to Up/Dwn Filter Input						5	μs

ELECTRICAL CHARACTERISTICS: WAVEFORMS

Figure 1: DC load Figure 2: Pulse load, Pulse duration 2 ms

Rev A2, Page 11/12

OPERATING REQUIREMENTS: µP INTERFACE

Operating Conditions: VCC= VCCA= VCCD= $5V \pm 10\%$, Ta= $0..70^{\circ}$ C, CL()= 150pF, input levels lo= 0..0.45V, hi= 2.4V..VCC, see Fig. 3 for reference levels and waveforms

Item	Symbol	Parameter	Conditions	Fig.			Unit
					Min.	Max.	
Data	Word Rea	d Timing					
l1	tar	Setup Time: CSN, A0, A1 set before RDN hi-lo		4	30		ns
12	tRA	Hold Time: CSN, A0, A1 stable after RDN lo⊸hi		4	10		ns
13	tRD	Read Data Access Time: Data valid after RDN hi→lo		4		120	ns
14	tDF	Read Data Hold Time: Ports high impedance after RDN lo⊸hi		4		65	ns
15	tRW	Recovery Time between Read/Write Cycles		4	165		ns
Data	Word Writ	te Timing					
16	taw	Setup Time: CSN, A0, A1 set before WRN hi→lo		4	30		ns
17	tDW	Write Data Setup Time: Data valid before WRN lo-hi		4	100		ns
18	twa	Hold Time: CSN, A0, A1 stable after WRN lo→hi		4	10		ns
19	twD	Write Data Hold Time: Data valid after WRN lo-hi		4	10		ns

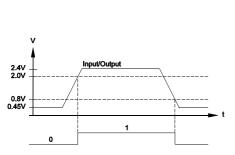


Figure 3: Reference levels

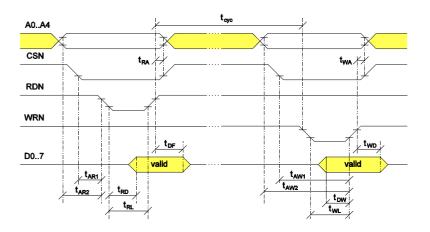


Figure 4: Data word read/write timing

iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.com/infoletter; this letter is generated automatically and shall be sent to registered users by email. Copying – even as an excerpt – is only permitted with iC-Haus approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover (Hannover-Messe).

We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to.

Rev A2, Page 12/12

ORDERING INFORMATION

Туре	Package	Order designation
iC-VRV	PLCC44	iC-VRV PLCC44

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Tel +49 (6135) 9292-0
Am Kuemmerling 18 Fax +49 (6135) 9292-192
D-55294 Bodenheim Web: http://www.ichaus.com
GERMANY E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.de/support_distributors.php