iC-PMX

ENERGY HARVESTING MULTITURN COUNTER/ENCODER

Absolute end-of-shaft encoders

Absolute hollow shaft encoders

Absolute linear encoders

Encapsulated flow meters

APPLICATIONS

٠

٠

٠

٠

٠

Multiturn encoders

Period counters

Liquid flow meters

Gas meters

PACKAGES

Rev A1, Page 1/24

FEATURES

and applicants.

- Gearless and batteryless revolution counter
- Energy harvesting through Wiegand pulses¹
- Integrated Hall switch for direction detection
- Evaluation of Pt1000 sensor output for high accuracy gas meter applications
- SPI interface to external nonvolatile RAM
- Independent SPI interface to microcontroller (configuration and data exchange)
- ♦ 4 low-noise Hall sensors with differential analog output
- Electrical Wiegand wire excitation for synchronization with singleturn

(such as WO 2004/046735 A1) and require licensing by the inventors

- Runt pulse tolerant counting algorithm
- ♦ All accessory components are off-the-shelf products

¹ Devices and processes for energy harvesting by Wiegand wire within position encoders are protected by several worldwide patents 5 mm x 5 mm

QFN48 7 mm x 7 mm

Haus

DESCRIPTION

iC-PMX uses a Wiegand wire to generate the electrical energy for acquiring, processing and storing the absolute position of any number of periods of the magnetic field. This energy harvesting capacity is supplemented with a singleturn sensor module for high resolutions and a special placement and electrical processing of the enclosed Hall sensors.

Additionally a temperature module is integrated to allow the precise calculation of gas volume in flow meters. The ASIC has an operating temperature range of up to 125 °C and is suitable for measuring at high speed.

Typical applications are highly integrated energy autonomous magnetic absolute encoders and metering applications. The absolute encoders can replace established gear or battery buffered solutions.

Rev A1, Page 3/24

Haus

PACKAGING INFORMATION

PIN CONFIGURATION QFN32 5 mm x 5 mm

PIN FUNCTIONS

No. Name Function

1	W1	Wiegand Module Pin 1
2	W2	Wiegand Module Pin 2
3	VDD	Supply Voltage for Singleturn Hall
4	VCC	Supply Voltage (5V)
5	CP	Cap CD Pin P
6	CN	Cap CD Pin N
7	GND	Ground
8	C0	Configuration
9	C1	Configuration
10	C2	Configuration
11	C3	Configuration
12	MISOR	FRAM Interface, Master Data Input
13	NCSR	FRAM Interface, Chip Select
14	NRSTR	FRAM Interface, Reset
15	SCKR	FRAM Interface, Clock
16	MOSIR	FRAM Interface, Master Data Output
17	ADJ	Feedback Voltage for VRAM
18	VRAM	Voltage for FRAM (internally provided)
19	V3	Core Voltage (internally provided)
20	PTP	Thermometer Positive Supply
21	PTS	Thermometer Sense Pin
22	PTN	Thermometer Negative Supply
23	HOP	Hall Output positive (Singleturn Hall)
24	HON	Hall Output negative (Singleturn Hall)
25	SH	Switch Hall MCU (Singleturn Hall)
26	NCS	Serial Interface MCU, Chip Select
27	SCK	Serial Interface MCU, Clock
28	MOSI	Serial Interface MCU, Slave Data Input
29	MISO	Serial Interface MCU, Slave Data Out-
		put
30	RDY	Data Ready MCU
31	VUP	Supply Voltage for MCU I/O
32	VWC	Cap CVWC

The backside pad has to be connected to GND on the PCB.

Rev A1, Page 4/24

Haus

PACKAGE DIMENSIONS QFN32 5 mm x 5 mm

All dimensions given in mm.

All dimensions given in mm. Size of hall sensors: $140\mu m$. Tolerance of sensor pattern: $\pm 0.10mm$ / $\pm 1^{\circ}$ (with respect to center of backside pad). Tolerance of package center: $\pm 0.05mm$ (with respect to center of backside pad). Tolerances of form and position according to JEDEC M0–220.

dra_qfn32-5x5-6_pm_pack_1, 10:1

Rev A1, Page 5/24

aus

PIN CONFIGURATION QFN48 7 mm x 7 mm

PIN FUNCTIONS

No. Name Function

1 n/c

- 2 VWC Cap CVWC
- 3 W1 Wiegand Module Pin 1
- 4 W2 Wiegand Module Pin 2
- 5 VDD Supply Voltage for Singleturn Hall
- 6 VCC Supply Voltage (5V)
- 7 CP Cap CD Pin P Cap CD Pin N
- 8 CN
- 9 GND Ground Configuration 10 C0
- 11 n/c
- 12 n/c

The backside pad has to be connected to GND on the PCB.

PIN	FUNCTIO	ONS
No.	Name	Function
13	n/c	
14	n/c	
15	C1	Configuration
16	C2	Configuration
17	C3	Configuration
18	MISOR	FRAM Interface, Master Data Input
19	NCSR	FRAM Interface, Chip Select
20	NRSTR	FRAM Interface, Reset
21	SCKR	FRAM Interface, Clock
22	MOSIR	FRAM Interface, Master Data Output
23	n/c	
24	n/c	
25	n/c	
26	ADJ	Feedback Voltage for VRAM
27	VRAM	Voltage for FRAM (internally provided)
28	V3	Core Voltage (internally provided)
29	PTP	Thermometer Positive Supply
30	PTS	Thermometer Sense Pin
31	PTN	Thermometer Negative Supply
32	HOP	Hall Output positive (Singleturn Hall)
33	HON	Hall Output negative (Singleturn Hall)
34	VUP	Supply Voltage for µP I/O
35	INT	Bias Current
36	n/c	
37	n/c	
38	n/c	
39	n/c	
40	SH	Switch Hall MCU (Singleturn Hall)
41	NCS	Serial Interface MCU, Chip Select
42	SCK	Serial Interface MCU, Clock
43	MOSI	Serial Interface MCU, Slave Data Input
44	MISO	Serial Interface MCU, Slave Data Out-
4-		put
45	RDY	Data Ready MCU
46	VUP	Supply Voltage for MCU I/O
47	n/c	
48	n/c	

Rev A1, Page 6/24

Haus

PACKAGE DIMENSIONS QFN48 7 mm x 7 mm

All dimensions given in mm.

All dimensions given in mm. Size of hall sensors: $140\mu m \times 140\mu m$. Tolerance of sensor pattern: $\pm 0.10mm / \pm 1^{\circ}$ (with respect to center of backside pad). Tolerance of package center: $\pm 0.05mm$ (with respect to center of backside pad). Tolerances of form and position according to JEDEC MO-220.

drb_qfn48-2_pm_pack_1, 8:1

Rev A1, Page 7/24

Haus

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

ltem	Symbol	Parameter	Conditions			Unit
No.	-			Min.	Max.	
G001	VCC	Voltage at VCC		-0.3	6	V
G002	VDD	Voltage at VDD		-0.3	6	V
G003	I(VCC)	Current in VCC		-10	40	mA
G004	I(VDD)	Current in VDD		-10	40	mA
G005	Vd()	ESD Susceptibility	HBM 100 pF discharged through 1.5 k Ω Wiegand Sensor Pins W1, W2		2 1	kV kV
G006	Tj	Operating Junction Temperature		-40	125	°C
G007	Ts	Storage Temperature Range		-40	150	°C
G008	H()	Magnetic Field Strength		-1000	1000	kA/m
G009	V()	Voltage at VWC, W1, W2, CP		-0.3	12	V
G010	V()	Voltage at CN, B0-B6, ADJ, V3, PTP, PTS, INT, HOP, HON, SH, NCS, SCK, MOSI, MISO, RDY, VUP		-0.3	6	V
G011	I()	Current in W1, W2, CP, CN		-40	+40	mA
G012	1()	Current in PTP, PTS, PTN, INT, HOP, HON, VWC, V3, VRAM, ADJ, B0-B6, VUP, NCS, SCK, MISO, MOSI, SH, RDY		-10	+10	mA

THERMAL DATA

Item	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
T01	Rthja	Thermal Resistance Chip/Ambient	thermal pad connected to GND plane thermal pad connected to GND pin		60 100		K/W K/W

Rev A1, Page 8/24

Haus

iC

ELECTRICAL CHARACTERISTICS

				1		e etatea	
ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total	Device						
101	V(VCC)	Permissible Supply Voltage		4.5	5.0	5.5	V
102	I(VCC)	Supply Current	singleturn Hall sensors enabled, current ramp off		4	6	mA
103	I ₀ (VCC)	Standby Current I(VCC)	singleturn Hall sensors disabled, current ramp off	-	1	2	mA
104	V(VUP)	Permissible Supply Voltage		3.0	<u> </u>	5.5	V
105	I(VUP)	Supply Current	SCK, MOSI, SH = 0V, NCS = V(VUP)	1	30	100	μA
107	Vc()hi	Clamp Voltage hi at Inputs NCS, SCK, MOSI, SH	Vc()hi = V() - V(VUP), I() = 1 mA	0.3		1.2	V
108	Vc()hi	Clamp Voltage hi at Input PTP, PTS, B0-B6	Vc()hi = V() - V(VRAM), I() = 1 mA	0.3		1.2	V
109	Vc()lo	Clamp Voltage lo at all pins	I() = -4 mA	-1.2	1	-0.3	V
110	I(V3)	Permissible Load Current V3		1	1	-1	mA
111	I(VRAM)	Permissible Load Current VRAM		1		-1	mA
113		Max. Voltage on W1, W2, VWC, CP	CVWC = 6.8nF,			11	V
114	Qwc()	Charge Consumption for Wiegand Pulse Processing	C1 = 0, C0 = 0 (period counter mode)	-	6.5	8	nC
115	V(VRAM)	Permissible FRAM Supply Volt- age	programmed by the voltage divider at pin ADJ	1.5		3.3	V
Active	e Rectifier						
201	V(VWC)	Voltage	V(W1,W2) = +- 3 V, I(VWC) = 5 mA V(W1,W2) = +- 5.5 V, I(VWC) = 5 mA	2.8 5.3			V V
202		Required Slew Rate for Activating the Active Rectifier		84			mV/µs
204		Allowed Slew Rate During Cur- rent Ramp				19	mV/µs
209		Required Delay between Alter- nating Wiegand Pulses		1			ms
Switc	hed Curren	t Ramp W1, W2					
301	Imax(Wx)		WI(1:0) = 00	-9.6	-8.1	-6.6	mA
			WI(1:0) = 01	-14	-12	-10	mA
			WI(1:0) = 10 WI(1:0) = 11	-18	-15.5	-13	mA
303	tr(), tf()	Rise and Fall Time Current Ramp	10% to 90%				
			RAMP(3:2) = 00	560	750	940	μs
			RAMP(3:2) = 01	360	480	600	μs
			RAMP(3:2) = 10 RAMP(3:2) = 11	290	370	450	μs
304	t()	Duration of Current Ramp	from end of SPI current ramp command, to current ramp disconnection from W1. W2		240	300	μ5
			RAMP(3:2) = 00	1600	2150	2700	μs
			RAMP(3:2) = 01	1100	1500	1900	μs
			RAMP(3:2) = 10 RAMP(3:2) = 11	800	1100	1400	μs
Phase (The s	e Sequence	Hall Sensor	AGE DIMENSIONS)		100	1000	μο
401	Ht()pos	Differential Magnetic Field	at the surface of the sensors	5	12.5	40	kA/m
		Strength Threshold pos			12.0	-10	
402	Ht()zero	Differential Magnetic Field Strength Threshold zero	at the surface of the sensors	-10		+10	kA/m
403	Ht()neg	Differential Magnetic Field Strength Threshold neg	at the surface of the sensors	-40	-12.5	-5	kA/m
404	H()	Tolerated Magnetic DC Field Strength	common magnetic field strength at the surface of both sensors	-200		+200	kA/m

Rev A1, Page 9/24

Haus

ELECTRICAL CHARACTERISTICS

Opera	ting Conditio	ns: VCC = 4.55.5 V, VUP = 3.0V	VCC, Tj = -40 °C125 °C, INT calibrated to 100 µ/	A, unless	otherwis	e stated	
ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
A/D fo	or Temperate	ure Sensor					
501	TR	Measurement Range		-25		55	°C
503	ΔΤ	A/D Converter Resolution	C(PTS) < 100 pF Ta = -530 °C Ta = -2555 °C		0.5 1		ဂံဂံ
504	Terr	Linearity Error	calibrated, Ta = -530 °C		+/-1		LSB
508	l(PTP)hi	Current from Pin PTP during A/D Conversion	external resistance between PTP and PTN: $2k\Omega$		0.9		mA
Bias,	Power On W	/iegand (Self-Sustained Mode)					
601	V(V3)	Core Voltage	V(VWC) > 3.5V; I(VRAM) < 1 mA V(VDD) > 4.5V; I(VRAM) < 1 mA	2.7 2.7	3.3 3.3	3.6 3.6	V V
602	VWCon	Required Voltage on VWC	max. voltage, measured during the Wiegand pulse C1 = 0, CVWC = 6.8nF C1 = 0, CVWC = 10nF C1 = 1, CVWC = 10nF	4.4 4.1 tbd.			V V V
603	VWCOK	Required Voltage on VWC at Start of FRAM Access	measured during Wiegand pulse, at first falling edge of NCSR	2.7		3.0	V
606	VRAMoff	Turn-off Threshold VRAM	decreasing voltage at V3			1.5	V
608	V(ADJ)	Feedback Voltage of VRAM Source	feedback loop closed, V(VRAM) stable	1.17	1.23	1.29	V
Bias,	Bias, Power On (VCC powered)						
701	NPORon	Power-on-Reset Threshold VDD (digital logic)	increasing voltage at VDD	1.9		3.1	V
702	NPORoff	Power-off Reset Threshold VDD (digital logic)	decreasing voltage at VDD	1.7		2.8	V
703	NPORHys	Hysteresis		0.15	0.3		V
705	VDDOK	Brownout Detection Threshold Voltage		3.9		4.4	V
711	I(INT)	Bias Current	I(INT) vs. VDD BIAS = 0x0 BIAS = 0xF I(INT) calibrated at T = 25 °C	100 90	77 140 100	100 110	μΑ μΑ μΑ
Single	eturn Senso	rs and Analog Outputs HOP, HO	N				
(The s	ensor positio	ons are specified in chapter PACKA		1			
801	V(HOP) – V(HON)	Magnetic Field Sensitivity	Gain = 0x0, H = 10kA/m, T = -40°C Gain = 0x0, H = 10kA/m, T = 27°C Gain = 0x0, H = 10kA/m, T = 125°C Gain = 0x1, H = 10kA/m, T = 27°C Gain = 0x2, H = 10kA/m, T = 27°C Gain = 0x3, H = 10kA/m, T = 27°C Gain = 0x4, H = 10kA/m, T = 27°C Gain = 0x5, H = 10kA/m, T = 27°C Gain = 0x6, H = 10kA/m, T = 27°C Gain = 0x7, H = 10kA/m, T = 27°C		54 37 22 56 81 125 187 275 387 544		mV mV mV mV mV mV mV mV mV mV
806	tg()ana	Cut-off Frequency	C = 25 pF to GND	900			kHz
807	SR	Siew Rate	C = 25 pF to GND, Gain = 0x7	2.5			V/µs
808	I()but	Permissible Output Current		-1		1	mA
809	Vs()hi	Saturation Voltage hi	Vs() = V(VDD)-V(), I() = -0.8mA			0.5	V
810	Vs()lo	Saturation Voltage lo	I() = 0.8mA			0.5	V

Rev A1, Page 10/24

Haus

ELECTRICAL CHARACTERISTICS

Operating Conditions: VCC = 4.5...5.5 V, VUP = 3.0...VCC, Tj = -40 °C...125 °C, INT calibrated to 100 µA, unless otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Tvp.	Max.	Unit
Inputs	C0. C1. C2.	C3. MOSIR. MISOR			- 76-		
901	Vt()lo	Threshold Voltage lo		20			%VRAM
902	Vt()hi	Threshold Voltage hi				80	%VRAM
Outpu	ts MISOR, N	NCSR, NRSTR, SCKR, MOSIR	1	II.	I		
A01	Vs()hi	Saturation Voltage hi	Vs() = VRAM - V();I()= -1mA			350	mV
A02	Vs()lo	Saturation Voltage lo	I()= 1mA			350	mV
A03	tr()	Rise Time	V(V3) > 2.7V; C = 5 pF to GND			10	ns
			V(V3) > 2.7V; C = 10 pF to GND			20	ns
A04	tf()	Fall Time	V(V3) > 2.7V; C = 5 pF to VRAM V(V3) > 2.7V; C = 10 pE to VRAM			10 20	ns
Timin	Parameter					20	113
	g i arameter	tr(VRAM)					
			-		2		
					\		
		ts(NCSR)				
		SCK _R /					
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
				*****	XXX2		
					WW		
						[	
C02		NCS : Hold Time after Dieing		1			μs
003		Edge of NRST _R	C0 = VRAM	15			µs µs
C04	thi(NCSR)	NCS _R High Time		40			ns
C05	f()	SCK _R : Clock Frequency	sending opcode			15	MHz
			SPI data transmission			15	MHz
			DSPI data transmission			7.5	MHz MHz
	tc()	MISO- NCS-: Sotup Time to		10		5	
000	15()	Rising Edge of $SCK_{R}$					115
C07	th(MISOR)	MISO _P : Hold Time after Rising		0			ns
		Edge of SCK _R					
C08	td(MOSIR)	MOSI _R : Data Valid after Falling		-20		20	ns
		Edge of SCK _R					
C09	td(VWC,	Delay between End of Rising	VCC = 0V			20	
	NKSIK)	Edge(VVC) and Failing	C1 = 0, $C0 = 0$ (period counter mode) C1 = 0, $C0 = 1$ (16 bit period counter mode)			20 50	µs us
			C1 = 0, C0 = 1 (40 bit period counter mode)			60	μs
			C1 = 1 (gas gauge mode)			60	μs
C10	tpu(SPI)	Hold Time after Enabling SPI Feedthrough Mode			50		μs

Rev A1, Page 11/24

Haus

i(

## **ELECTRICAL CHARACTERISTICS**

ltem	Symbol	Parameter	Conditions	Min	Turn	Max	Unit
NO.		MOSL SU		Min.	Тур.	Max.	
Input:			1	20		1	
DUI		Threshold Voltage Io		20		00	%VUP
D02		I nresnold voltage ni				80	%VUP
D03	Vt()nys	I hreshold Voltage Hysteresis		200	05	70	mv
D04	lpd()	Pull-Down Current	V() = 1.5VVUP	4	35	70	μΑ
D05	Ipu()	Pull-Up Current for NCS	V() = 0VVUP-1.5V	-70	-35	-5	μΑ
Outpu	uts MISO, RE	DY					
E01	Vs()hi	Saturation Voltage hi	Vs() = VUP - V();I() = -2.8 mA			400	mV
E02	Vs()lo	Saturation Voltage lo	I() = 2.8  mA			400	mV
E03	tr()	Rise Time	C = 50 pF to GND (20% to 80% V(VUP)			30	ns
E04	tf()	Fall Time	C = 50 pF to VUP (80% to 20% V(VUP)			30	ns
E05	lpd()	Pull-Down Current MISO	MISO inactive, V() = 1.5VVUP	4	35	70	μΑ
Timin	g Parameter	SPI Slave Interface					
			(MOSI) LSB td(MISO) td(MISO)	Y ISB )			
504			<u></u>		10		
F01	tpu()	Hold time at power on			10		μs
F02	t()	SCK: Clock Frequency				20	MHz
F03	ts()	Edge of SCK		25			ns
F04	th(MOSI)	MOSI: Hold Time after Rising Edge of SCK		3			ns
F05	td(MISO)	MISO: Data Valid after Falling Edge of SCK	C = 50 pF to GND	0		75	ns
F06	tlo(SCK)	SCK High Time		25			ns
F07	thi(SCK)	SCK Low Time		25			ns
F08	th(NCS)	NCS: Hold Time after Rising Edge of SCK		25			ns
F09	thi(NCS)	NCS High Time		200			ns
F10	tlo(SH)	SH Low Time		100			ns
F11	thi(SH)	SH High Time		100			ns
F12	th(SH)	SH: Hold Time after Rising Edge of NCS		100			ns
F13	th(NCS,SH)	NCS: Hold Time after Change of		100			ns



aus

#### Self-Sustained Operation Mode Selection

iC-PMX can save the period information in a standard SPI NVRAM or in a data processing FRAM. The pins C0, C1, C2 and C3 are used to choose between the FRAM interfaces and the operating modes of iC-PMX. The pins must be tied to VRAM or GND.

Pin C0	
Value	Description
0	iC-RMF / MB85RDP16LX
1	Standard SPI NVRAM

#### Table 4: FRAM Selection

Pin C1	
Value	Description
0	Period Counter Mode
1	Gas Gauge Mode

Table 5: Counter Operating Mode

Pin C2	Pin C2			
Value	Description			
0	Differential Magnetic Field Measurement (H4-H5)			
1	Absolute Magnetic Field Measurement (H4)			

#### Table 6: Magnetic Field Measurement

Pin C3	
Value	Description
0	Single Threshold (see page 8, item no. 402): distinguish negative and positive magnetic fields
1	Two Thresholds (see page 8, item no. 401, 403): distinguish negative, insufficient and positive magnetic fields

#### Table 7: Magnetic Field Evaluation

Rev A1, Page 13/24

#### **SPI Slave Interface**

iC-PMX SPI Configuration Register Overview									
Addr	Bit 7 Bit 6 Bit 5			Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0x00	GAIN(2:0) DIS7			DIS7	SENSOR(1:0) PHASE(1:0)			E(1:0)	
0x01	RAMP(7:0)								
0x02		BIAS	6(3:0)		0 0 WI(1:0)				
0x03	TEST1(7:0)								
0x04	TEST2(7:0)								
0x05	TEST3(7:0)								
0x06	STATUS(7:0)								
0x07	REV(7:0)								

Table 8: iC-PMX SPI Configuration Register Overview

#### **General protocol description**

SPI modes 0 and 3 are supported, i.e. data is captured on the rising edge of SCK and the idle polarity of SCK is insignificant. Data is sent bytewise with the MSB first. Each data transmission begins with the master sending an opcode. MISO is in high impedance state if NCS is high and it stays in high impedance state until a read command is received. This allows to connect MISO and MOSI to realize a 3-wire SPI interface.

The opcodes 0x20 to 0x24 are used to set configuration parameters in iC-PMX. This is done by sending the opcode followed by 8 bit configuration data as shown in fig. 1. The 3 least significant bits of the opcode are used to select the address in the configuration memory. The parameter values are stored when the 16th rising edge of SCK is received.



Figure 1: 16-bit Set Commands

The opcodes 0x28 to 0x2f are used to read data from iC-PMX. This is done by sending the opcode and providing 8 additional clocks on SCK as shown in fig. 1. The 3 least significant bits of the opcode are used to select the address in the configuration memory. Output pin MISO leaves its high impedance state on the first falling edge of SCK after the opcode was received.



Figure 2: 16-bit Read Commands

The opcodes 0x10 to 0x1f are single byte commands to configure the most important singleturn Hall sensor parameters (see fig. 3).



Figure 3: Singleturn Hall Output Selection

OPCODES	
Code	Description
0x10-0x1f	SELH (Select Hall Output Signal for Differential Output HOP/HON)
0x20	Set Singleturn Parameter
0x21	Set Current Ramp Parameter
0x22	Set BIAS and WI Parameter
0x23	Set TEST1 Parameter
0x24	Set TEST2 Parameter
0x28	Read singleturn Configuration
0x29	Read Current Ramp Status
0x2a	Read BIAS and WI Parameter
0x2b	Read TEST1 Parameter
0x2c	Read TEST2 Parameter
0x2e	Read Status
0x2f	Read Device Revision
0x30	Read POS

Table 9: OPCODE Summary



**CUS** 

#### **Device Calibration and System Diagnosis**

#### **BIAS** parameter

The BIAS parameter in each iC-PMX device should be calibrated to ensure accurate current ramp parameters and optimal operation of the singleturn sensors. It may vary from device to device. The best fitting BIAS parameter should be stored in the MCU's nonvolatile memory for later usage.

Opcode 0x22 is used to set the BIAS parameter. Valid values are shown in table 10. The current source I(INT) is driving pin INT of the QFN48 packages and can also be connected to pin HOP. The nominal value of the current source is 100  $\mu$ A. Its value is measured with a 10k $\Omega$  resistor against pin VDD.

Send opcode 0x23 with parameter 0x18 to connect I(INT) with pin HOP. Send opcode 0x23 with parameter 0x00 to quit this test mode.

The active setting of the BIAS parameter can be read with opcode 0x2a.

BIAS Correction					
Value	Description				
0x0	-23%				
0x1	-20%				
0x2	-17%				
0x3	-14%				
0x4	-12%				
0x5	-9%				
0x6	-6%				
0x7	-3%				
0x8	0%				
0x9	+6%				
0xA	+11%				
0xB	+17%				
0xC	+23%				
0xD	+28%				
0xE	+34%				
0xF	+40%				

Table 10: BIAS Parameter

#### **Device revision**

Opcode 0x2f is used to read the device revision.

Device Revisions	
Value	Description
0x08	iC-PMX 0
0x0A	iC-PMX 1
0x0D	iC-PMX 4

#### Notification of Wiegand pulses

iC-PMX can send a notification of Wiegand pulses via the SPI slave interface. This is realized by sending a 16-bit read command which is paused after the 11th clock cycle. The required opcode is 0x2e. The default state of the pin MISO is low and it changes to high during each Wiegand pulse.



Figure 4: SPI Communication to Enable Wiegand Pulse Notification



MISO Pin

#### End of current ramp detection

The status of the current ramp generator can be read through the SPI slave interface. This can be used to detect when the current ramp has finished. See chapter *Wiegand Module Excitation* for details.

#### Pin RDY: Data Ready

Pin RDY is high if V(VDD) and V(VCC) are above the brownout detection threshold voltage and the poweron startup routine has finished. This can be used to decide if the data provided by SPI command *Read POS* is valid and if the single turn sensors are ready for operation.

Rev A1, Page 15/24

#### Position of the Hall Sensors and the Sensor Signal Processing

Pin 1 Mark



Figure 6: Position of the Hall Sensors

#### Phase sequence Hall switch

The Hall data for the Wiegand pulse evaluation is acquired with the sensors H4 and H5 (see fig. 6). Dimensional drawings for the two packages can be found on page 4 and page 6. Those Hall sensors are evaluated when a Wiegand pulse occurs. iC-PMX can measure the differential magnetic field strength between the Hall sensors H4 and H5 or the absolute magnetic field strength at Hall sensor H4. Pin C2 is used to choose between those two options.

The magnetic field strength is amplified and compared against three internal thresholds (see el. char. 401, 402, 403). Pin C3 is used to select the desired magnetic polarity thresholds.

#### Logic Table for C3 = 0:

- differential magnetic field below min(Ht()zero): MP = 0
- differential magnetic field above max(Ht()zero): MP = 1
- otherwise: MP = arbitrary value

#### Logic Table for C3 = 1:

- PP = 1: differential magnetic field below min(Ht()neg): MP = 0
  - differential magnetic field above max(Ht()neg): MP = 1
     otherwise: MP = arbitrary value
  - otherwise. WF = arbitrary value
- PP = 0: differential magnetic field below min(Ht()pos): MP = 0
  - differential magnetic field above max(Ht()pos): MP = 1
    - otherwise: MP = arbitrary value



Figure 7: Sensor Principle

The internal magnetic polarity signal (MP) depends solely on the threshold Ht()zero if pin C3 is 0. The magnetic field strength during the sensor evaluation must be outside of the specified threshold limits, otherwise the signal has an arbitrary value.

The internal magnetic polarity signal depends on the thresholds Ht()pos, Ht()neg and the Wiegand pulse polarity (PP) if pin C3 is high. The threshold Ht()neg is used to determine the value of MP if the Wiegand pulse polarity is positive (PP = 1). The threshold Ht()pos is used to determine the value of MP if the Wiegand pulse polarity is negative (PP = 0).



Figure 8: Hall Amplifier Output Voltages

#### Singleturn sensors

The singleturn Hall sensors (H0, H1, H2, H3) are arranged in a circle with a diameter of 3.25 mm, which is placed in the center of the package as shown on page 4 and on page 6. Fig. 6 shows the position of the Hall sensors with respect to the Pin 1 mark.

The singleturn sensors are temporarily disabled while VDD or VCC are below VDDOK (brownout protection).

If a magnetic south pole comes close to the surface of the package, the resulting magnetic field has a positive component in the +z direction (i.e. from the top of the package). This results in an increase of the voltage difference between HOP and HON during the measurement phases 0 and 2. In the measurement phases 1 and 3 it results in a decrease of the voltage difference (see fig. 8). The common mode voltage of HOP and HON is V(VUP)/2.

Four measurements with constant amplifier gain should be done for each Hall sensor to remove first and second order offset errors. This results in 16 A/D values which can be reduced to two linearly independent quantities:

 $\begin{array}{l} \mathsf{Q}_0 = (H0, 0 - H0, 1) + (H0, 2 - H0, 3) \\ \quad - ((H2, 0 - H2, 1) + (H2, 2 - H2, 3)) \\ \mathsf{Q}_1 = (H3, 0 - H3, 1) + (H3, 2 - H3, 3) \\ \quad - ((H1, 0 - H1, 1) + (H1, 2 - H1, 3)) \end{array}$ 

 $Q_0$  is proportional to  $sin(\alpha)$  and  $Q_1$  is proportional to  $cos(\alpha)$  if the magnetic field is generated by a diametrically magnetized, cylindrical permanent magnet as shown in fig. 7.

#### Singleturn Hall output selection

The opcodes 0x10 to 0x1f can be used to choose the singleturn Hall sensor voltage which can be measured between the pins HOP and HON.

These commands are executed when the rising edge of NCS is received. This is visualized in fig. 3 by the signal change on HOP/HON. The value of OP1 and OP0 selects the measurement phase, the value of OP3 and OP2 selects the Hall sensor (see table 12).

OPCODE 0x100x1f	
OP3OP2	Select Hall sensor (03)
OP1OP0	Select measurement phase (03)

Table 12: Fast Hall Sensor Selection

#### Combined singleturn gain and output selection

Opcode 0x20 must be used if the Hall amplifier should be disabled or its gain has to be changed. Table 13 shows the coding of the singleturn parameters within the data byte. The gain is changed straightaway with the 16th rising edge of SCK, the output selection is changed when the rising edge of NCS is received.

Singleturn Parameters	
DB7DB5	GAIN(2:0); gain of the singleturn Hall amplifier (07)
DB4	DIS7; disable singleturn sensors, default value: 0
DB3DB2	SENSOR(1:0); select Hall sensor (03)
DB1DB0	PHASE(1:0); select measurement phase (03)

Table 13: singleturn Parameters

## Switching the singleturn output selection with pin SH

Pin SH can be used to change the singleturn output selection if pin NCS is high.

An internal state machine switches to the next output selection whenever the voltage on pin SH changes. The sequence of output selections is fixed and documented in fig. 8. The minimum delay between switching commands is 100 ns, as documented in the *Electrical Characteristics*, section *Timing Parameter SPI Slave Interface*. The active output selection can be read with opcode 0x28, and it is possible to set an arbitrary start value with the SPI commands.

Rev A1, Page 17/24

ICUS

#### Wiegand Module Excitation

#### **Current ramp parameters**

Opcode 0x21 is used to start a Wiegand wire excitation. Valid parameters are described in table 14 and table 15. This function is used to determine if the Wiegand wire is precharged. A current ramp is applied to the coil around the Wiegand wire. This generates an additional magnetic field, which can trigger a Wiegand pulse if the Wiegand wire is precharged.

The duration of the current ramp and the maximum current must be selected suitable for the chosen Wiegand module. The voltage slew rate during the current ramp is determined by the Wiegand module's resistance and the above parameters. Its worst case value should be below the allowed slew rate during current ramps (see page 8, item no. 204).

## Recommended values for the capacitors CB and CD $\,$

The capacitor CB between Pin VDD and Pin GND should be large enough to ensure that the voltage drop during the current ramp is less than 1V. That's an important concern during a power loss event. The brownout protection is used to continue the current ramp and the capacitor CB is calculated for the worst case: Power loss at the start of the current ramp. The voltage drop can be calculated based on the electrical characteristics, item no. 103, item no. 301 and item no. 304.

Recommended Values for Wiegand Module 201940: RAMP(3:2)="10" and WI(1:0)="10":

min(CB) = 1400 µs * (0.5 * 18.4mA + 2mA) = 15.7 µF

The capacitor CD between Pin CP and Pin CN should also be larger than min(CB).

WI(1:0)	
Bit	Description
10	Select max. current (see page 8, item no. 301), default value: 0

Table 14: Current Ramp Parameters 1/2

RAMP(7:0)	
Bit	Description
74	0x7: Start current ramp, default mode 0xF: Start current ramp with disabled Hall sensor evaluation, value of MP is defined by bit 1
32	Select duration of current ramp (03) (see page 8, item 304)
1	Value of MP if bit 7 = 1
0	<ul> <li>0: Set current direction to test for a negative</li> <li>Wiegand pulse (PP = low)</li> <li>1: Set current direction to test for a positive</li> <li>Wiegand pulse (PP = high)</li> </ul>

Table 15:	Current	Ramp	Parameters	2/2
-----------	---------	------	------------	-----

#### End of current ramp detection

Opcode 0x29 can be used to read the status of the current ramp generator. The result is equal to the values in table 15 if the current ramp is active. The bits 4 to 6 of the status are set to zero when the current ramp has finished.



ICUS

#### **FRAM Access**

#### **Read POS**

iC-PMX reads the position data from the FRAM whenever the power supply voltage VCC is applied, and the data is updated after each Wiegand pulse (if VCC is still available). Opcode 0x30 is used to access iC-PMX's copy of the position data. The data is provided bytewise, starting with address 0x0.

#### **FRAM** access

iC-PMX has a feedthrough mode to allow direct access to the FRAM. iC-PMX gives exclusive access to the FRAM once the feedthrough mode is activated. FRAM access is delayed if iC-PMX is using the FRAM when the feedthrough mode is activated. Pin RDY signals that the feedthrough mode was activated. It is pulled low after iC-PMX finished the internal FRAM communication.

In feedthrough mode the data at NCS, SCK and MOSI is used to drive NCSR, SCKR and MOSIR, the data at MISOR is sampled with an internal clock and those values are used to drive MISO. The data is not interpreted in iC-PMX.

iC-PMX reads the position data from the FRAM when the feedthrough mode is deactivated. It is the customer's responsibility to ensure that the Wiegand pulse processing is not disturbed.

The feedthrough mode is activated if *TEST2* is programmed with 0x80 and pin SH is high. Pin SH must be set to low to disable the feedthrough mode.

Programming Sequence:

- 1. Set pin SH to '0'
- Send opcode 0x24 and parameter 0x80 (TEST2 := 0x80)
- 3. Set pin SH to '1'
- 4. Wait for pin RDY='0'
- 5. Wait for tpu(NCSR)
- Do the data exchange with the FRAM. (The MISO Pin of the FRAM is sampled with an internal Clock of at least 7.5 MHz. Please take the resulting added latency into account during read accesses to the FRAM.)
- 7. Set pin SH to '0'
- 8. Wait for pin RDY='1'
- Send opcode 0x24 and parameter 0x00 (TEST2 := 0x00)

#### **Calculation of the CRC-values**

The FRAM data in Gas Gauge Mode and in Period Counter Mode with standard FRAM is secured with a CRC:

- Start value 0x1
- CRCpolynom (CRC-4): x⁴ + x + 1
- The CRC value is saved inverted if a former CRC error is detected

#### **Example of CRC Calculation Routine**

```
// Data is an array of the input data
11
   Example:
   Data[0] = Bit \ 0 \ of \ Addr \ 0x0,
11
// Data[0] = Bit 0 of Addr 0x0,
// Data[7] = Bit 7 of Addr 0x0,
// DATA[8] = Bit 0 of ADR(0x01), ...
int iCRCPoly = 0x13;
int i = 0
unsigned char ucCRC=1; // start value !!!
for (i=0; i<=uclMAX; i++) {</pre>
   if ((ucCRC >> 3) != Data(i))
     ucCRC = ((ucCRC << 1) ^ iCRCPoly) & 0x0f;
  else
     ucCRC = (ucCRC << 1) \& 0x0f;
.
// Result:
// CRC[3] = ucCRC & 0x01;
// CRC[2] = (ucCRC >> 1) & 0x01;
// CRC[1] = (ucCRC >> 2) & 0x01;
// CRC[0] = (ucCRC >> 3) & 0x01;
```

iC-PMX ENERGY HARVESTING MULTITURN COUNTER/ENCODER

Rev A1, Page 19/24

laus

## Position Data in Period Counter Mode with a Data Processing FRAM

The revolution counter data in iC-RMF / MB85RDP16LX is optimized against imprint effects of FRAM. iC-PMX reads the data of the FRAM with the RDTS command to get a decoded data set. Tab. 16 shows the available data as it is available through the **Read POS** command.

Positio	Position Data in Period Counter Mode with iC-RMF / MB85RDP16LX							
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00			POS	6(5:0)			LDIR	LPP
0x01				POS	(13:6)			
0x02				POS(	21:14)			
0x03	POS(29:22)							
0x04				POS(	37:30)			
0x05	EFLA	G(1:0)	INVALID			POS(42:38)		
0x06								
:	_							
0x0E								
0x0F								

Table 16: Position Data in Period Counter Mode with iC-RMF / MB85RDP16LX (pin C0 = 0, pin C1 = 0)

#### **Register Map, Overview**

- POS: revolution counter value LDIR: direction of last POS change (0 = incrementing, 1 = decrementing)
- LPP: polarity of last Wiegand pulse (1 = positive, 0 = negative)
- EFLAG(1:0): error information (0 = no error, 1 = Overflow, 2 = uncorrectable ECC error, 3 = incomplete write access)
- INVALID:

error information (position data changed during read access, please discard the data and read it again)

C3, C2, C1, C0: Value of the Pins C3-C0, sampled during the last wiegand pulse

processing

Rev A1, Page 20/24

laus

#### Position Data in Period Counter Mode with a standard FRAM

The revolution counter register maps for use with a standard FRAM are optimized against imprint effects of FRAM. This is realized by balancing the 0/1 duty cycle of the POS bits: The POS value is inverted if LPP is high, the POS bit length is coded in Bit 1 and Bit 0 of address 0x0.

16 Bit Revolution Counter Register Map									
Addr	Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit								
0x00		POS	(3:0)		LPP	LMP	0	0	
0x01	POS(11:4)								
0x02	CRC(3:0) POS(15:12)								
0x03									
:				-	_				
0x0E									
0x0F				INVALID	C3	C2	C1	C0	

#### Table 17: 16 Bit Revolution Counter Register Map

24 Bit Revolution Counter Register Map								
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00	POS(3:0) LPP LMP 0 1						1	
0x01	POS(11:4)							
0x02	POS(19:12)							
0x03		CRC	(3:0)			POS(2	23:20)	
0x04								
÷				-	_			
0x0E								
0x0F		_		INVALID	C3	C2	C1	C0

Table 18: 24 Bit Revolution Counter Register Map

32 Bit Revolution Counter Register Map								
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00		POS(3:0)			LPP	LMP	1	0
0x01				POS(	(11:4)			
0x02	POS(19:12)							
0x03	POS(27:20)							
0x04	CRC(3:0) POS(31:28)							
0x05								
:								
0x0E								
0x0F	— INVALID			INVALID	C3	C2	C1	C0

Table 19: 32 Bit Revolution Counter Register Map

Rev A1, Page 21/24

40 Bit Revolution Counter Register Map								
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00	POS(3:0)			LPP	LMP	1	1	
0x01				POS	(11:4)			
0x02				POS(	19:12)			
0x03	POS(27:20)							
0x04	POS(35:28)							
0x05	CRC(3:0) POS(39:36)							
0x06								
÷								
0x0E								
0x0F	— INVALID				C3	C2	C1	C0

Table 20: 40 Bit Revolution Counter Register Map

#### **Register Map, Overview**

POS:	revolution counter (value is inverted if
	LPP=1)
LMP:	polarity of the last magnet polarity
	(1=positive, 0 = negative)
LPP:	polarity of last Wiegand pulse
	(1=positive, 0 = negative)
CRC:	CRC for byte 0x0, bit 0 up to the mos

CRC: CRC for byte 0x0, bit 0 up to the most significant bit of POS

## INVALID: error information (position data changed during read access, please discard the data and read it again) C3, C2, C1, C0:

Value of the Pins C3-C0, sampled during the last wiegand pulse processing



target specification confidential **iC-PMX** ENERGY HARVESTING MULTITURN COUNTER/ENCODER

Rev A1, Page 22/24

Haus

## Data in Gas Gauge Mode

The gas gauge mode uses two counters. The amount of gas flowing forward is summed in VOLFW and the amount of gas flowing backward is summed in VOLBW.

Positio	Position Data in Gas Gauge Mode							
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00				VOLF	W(7:0)			
0x01		VOLFW(15:8)						
0x02				VOLFW	/(23:16)			
0x03				VOLFW	/(31:24)			
0x04				VOLFW	/(39:32)			
0x05		CRC	1(3:0)			VOLFW	/(43:40)	
0x06	IOFF(7:0)							
0x07	CRC2(3:0)			LPP	LMP			
0x08	VOLBW(7:0)							
0x09	VOLBW(15:8)							
0x0A	VOLBW(23:16)							
0x0B	VOLBW(31:24)							
0x0C	CRC3(3:0)				VOLBW(35:32)			
REFERENCE VALUES FOR GAS METER								
0x0D	IPSCM(7:0)							
0x0E	IPSCM(15:8)							
0x0F	— INVALID C3 C2 C1 C0					C0		

Table 21: Position Data in Gas Gauge Mode (pin C1=1)

#### Register Map. Overview

<b>Register Ma</b>	ap, Overview	CRC1:	CRC for address 0x0 to 0x5
LMP:	polarity of the last magnet polarity	CRC2:	CRC for address 0x6 to 0x7
	(1=positive, 0 = negative)	CRC3:	CRC for address 0x8 to 0xC
	(1=positive, 0 = negative)	INVALID:	error information (position data
VOLFW: VOLBW:	gas volume in forward direction		discard the data and read it again)
IOFF:	offset correction for increment value in	C3, C2, C1,	, C0:
	gas meter mode (typ. value 0)		Value of the Pins C3-C0, sampled
IPSCM:	conversion factor into Standard Cubic		during the last wiegand pulse
	IVIETEr		processing

# iC-PMX ENERGY HARVESTING MULTITURN COUNTER/ENCODER



Haus

#### **REVISION HISTORY**

Rel	Rel.Date	Chapter	Modification	Page
A0.4	14-01-24		first confidental release of target specification	
Rel	Rel.Date	Chapter	Modification	Page
A0.5	14-04-28	ELECTRICAL CHARACTERISTICS	102, 103, 114, 115, 202, 602, 606, 608, 705, C03, C09	8-10
A0.5	14-04-28	Device Calibration and System Diagnosis	Added device revision of iC-PMX 1	14
A0.5	14-04-28	Device Calibration and System Diagnosis	Added section Pin RDY: Data Ready	14
A0.5	14-04-28	Position of the Hall Sensors and the Sensor Signal Processing	Added information that the singleturn is disabled during brownout protection	16
A0.5	14-04-28	Wiegand Module Excitation	Added section Recommended values for the capacitors CB and CD	17
Rel	Rel.Date	Chapter	Modification	Page
A1	14-12-05	ABSOLUTE MAXIMUM RATINGS	G005	7

-		The second se		
A1	14-12-05	ABSOLUTE MAXIMUM RATINGS	G005	7
A1	14-12-05	ELECTRICAL CHARACTERISTICS	114, 204, 301, 303, 304, 601, 603, 608	8-11
A1	14-12-05	Device Calibration and System Diagnosis	Added information that the BIAS calibration is needed to ensure accurate current ramp parameters	14
A1	14-12-05	Position of the Hall Sensors and the Sensor Signal Processing	Corrected the formula for Q ₁ .	16
A1	14-12-05	Wiegand Module Excitation	Corrected page references in table 14 and table 15	17
A1	14-12-05	Wiegand Module Excitation	Modified calculation example for min(CB)	17
A1	14-12-05	FRAM Access	Added information that Pin RDY is pulled low during feedthrough mode	18
A1	14-12-05	FRAM Access	Improved programming sequence for feedthrough mode	18
A1	14-12-05	FRAM Access	Added information about INVALID and C3-C0 in the Read POS data sets	19-22
A1	14-12-05	FRAM Access	Added information for period counter mode with standard FRAM and for gas gauge mode	18-22

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials.

The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (*Safety-Critical Applications*) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.



Rev A1, Page 24/24

#### **ORDERING INFORMATION**

Туре	Package	Order Designation
iC-PMX	QFN32 5 mm x 5 mm	iC-PMX QFN32-5x5
iC-PMX	QFN48 7 mm x 7 mm	iC-PMX QFN48-7x7

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY

Tel.: +49 (0) 61 35 - 92 92 - 0 Fax: +49 (0) 61 35 - 92 92 - 192 Web: http://www.ichaus.com E-Mail: sales@ichaus.com