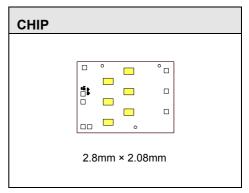
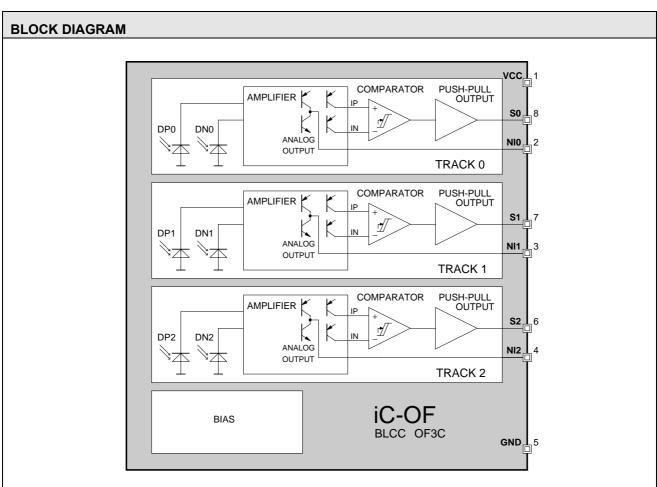
iC-OF

3-BIT OPTO ENCODER

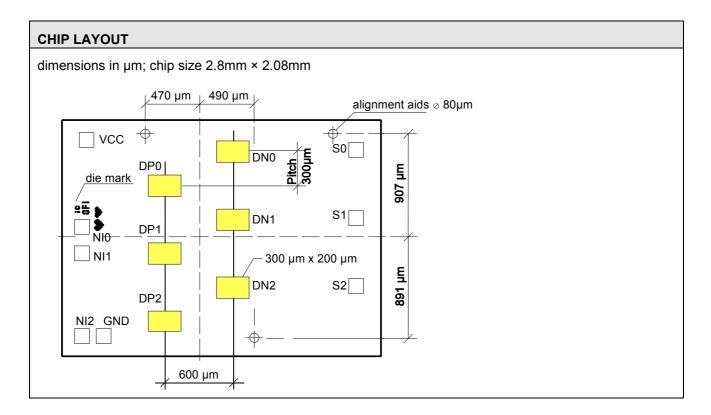

Rev C1, Page 1/6


FEATURES

- Monolithic construction with integrated photodiodes ensures excellent matching and technical reliability
- ♦ Short track spacing of 600 µm
- Elimination of dark current effects through differential scanning
- ♦ Photocurrent amplifier with high cut-off frequency
- ♦ Comparators with precise signal-related hysteresis
- ♦ Current-limited push-pull outputs
- Analog outputs as current source/sink additionally
- ♦ Low power consumption from 5V supply voltage
- ♦ Low board space requirements
- Options: extended temperature range to -40 °C, customized packages, COB and reticle assembly

APPLICATIONS

 Optical position decoding for incremental encoders using the principle of differential scanning


Rev C1, Page 2/6

DESCRIPTION

The iC-OF device is an optoelectronic detector IC for linear and angle measuring systems, such as shaft encoders, for example.

Photodiodes, amplifiers, comparators and TTL-compatible push-pull output drivers are integrated monolithically. Each of the 3 tracks is evaluated differentially; there are also analog outputs available.

The outputs are protected against ESD and short-circuit damage.

PAD DE	PAD DESCRIPTION					
Name	Function					
VCC NI0 NI1 NI2 S0 S1 S2 GND	+5V Supply Voltage Track 0 Analog Current Output Track 1 Analog Current Output Track 2 Analog Current Output Track 0 Push-Pull Output Track 1 Push-Pull Output Track 2 Push-Pull Output Ground					

Rev C1, Page 3/6

ABSOLUTE MAXIMUM RATINGS

Values beyond which damage may occur; device operation is not guaranteed.

Item	Symbol	Parameter	Conditions	Fig.			Unit
					Min.	Max.	
G001	VCC	Supply Voltage			-0.3	6	V
G301	V(S)	Voltage at Outputs S02			-0.3	VCC+0.3	V
G302	I(S)	Current in Outputs S02	V(S)< 0V or V(S)> VCC		-3	3	mA
G501	V(NI)	Voltage at Analog Outputs NI02			-0.3	VCC+0.3	V
G502	I(NI)	Current in Analog Outputs NI02			-3	3	mA
E001	Vd()	ESD-Susceptibility at all pins	HBM, 100 pF discharged through 1.5 $k\Omega$			2	kV
TG1	Tj	Chip Temperature			-40	125	°C
TG2	Ts	Storage Temperature	see package specification				

THERMAL DATA

Operating Conditions: VCC= 5V ±10%

Item	Symbol	Parameter	Conditions	Fig.			Unit	
					Min.	Тур.	Max.	
T1		Operating Ambient Temperature Range	see package specification					

Rev C1, Page 4/6

ELECTRICAL CHARACTERISTICS

Operating Conditions: VCC= 5V ±10%; Tj= -40..125 °C, unless otherwise noted.

ltem	Symbol	Parameter	Conditions	Tj	Fig.		ı	I	Unit
				°C		Min.	Тур.	Max.	
Total	Device	T	1						
001	VCC	Permissible Supply Voltage				4.5		5.5	V
002	I(VCC)	Supply Current in VCC, Outputs S02 hi	I(DP07)= 30nA, I(DN07)= 3nA, I(S07)= 0	27			2.3		mA
003	I(VCC)	Supply Current in VCC, Outputs S02 lo	I(DP07)= 3nA, I(DN07)= 30nA, I(S07)= 0	27			2.3		mA
004	fo	Cut-off Frequency, tracks 02	sinusoidal waveform, I(DP07)= 330nA, I(DN07)= 303nA			100			kHz
005	tp(D-S)	Propagation Delay	see No. 4					2.5	μs
006	fo	Propagation Delay, tracks 02	sinusoidal waveform, I(DP07)= 660nA I(DN07)= 606nA			200			kHz
007	tp(D-S)	Propagation Delay	see No. 6					1.5	μs
Photo	odiodes ar	d Amplifiers, tracks 02							
101	Aph(D)	Radiant Sensitive Area					0.2 × 0.3	3	mm²
102	S(λ)max	Spectral Sensitivity	λ= 850nm				0.5		A/W
103	λar	Range of Spectral Sensitivity	Se(λar)= 0.1×S(λ)max			500		1050	nm
104	I(D)	Permissible Photocurrent						90	nA
105	CM()	Common Mode DPi to DNi				0.85	1	1.15	
Diffe	rence Com	parators, tracks 02							
201	Hys	Hysteresis refered to [I(DPi) + I(DNi)] /2	I(DPi, DNi)= 390nA			8	11	16	%
Push	-Pull Outp	uts S02							
301	Vs()hi	Saturation Voltage hi	Vs()hi= VCC-V(); I()= -40μA	-40 27 70 125			0.81 0.69 0.58 0.51	0.9	V V V V
302	Vs()hi	Saturation Voltage hi	Vs()hi= VCC-V(); I()= -400μA	-40 27 70 125			0.92 0.83 0.74 0.68	1.0	V V V V
303	Vs()lo	Saturation Voltage lo	I()= 1.6mA	-40 27 70 125			0.20 0.22 0.25 0.27	0.4	>
304	Isc()hi	Short-Circuit Current hi	V()= 0VVCC-1.2V			-7	-4.6	-1.5	mA
305	lsc()lo	Short-Circuit Current lo	V()= 0.4VVCC			1.8	7.3	13	mA
306	SRhi	Slew-Rate hi	CL()= 30pF	27		24	61	130	V/µs V/µs
307	SRIo	Slew-Rate lo	CL()= 30pF	27		50	115	330	V/µs V/µs
308	Vc()hi	Clamp Voltage hi	Vc()hi= V()-VCC; S= hi, I()= 3mA			0.4		1.5	V
309	Vc()lo	Clamp Voltage lo	S= Io, I()= -3mA			-1.5		-0.4	V

Rev C1, Page 5/6

ELECTRICAL CHARACTERISTICS

Operating Conditions: VCC= 5V ±10%; Tj= -40..125 °C, unless otherwise noted.

Item	Symbol	Parameter	Conditions	Tj	Fig.				Unit
				°C		Min.	Тур.	Max.	
Analo	Analog Outputs NI02								
501	CR()	Current Ratio I(NIi) / (I(DPi)-I(DNi))	V(NIi)= 0.3VVCC-1.2V, I(DPi)= 390nA, I(DNi)= 903nA	27		550	720	850	
502	10()	Leakage Current	V(NI)= 0.3VVCC-1.2V, I(DPi,DNi)= 0			-1.5		1.5	μΑ
503	fo()	Cut-off Frequency	V(NIi)= constant, sinussoidal waveform, I(DPi)= 330nA, I(DNi)= 303nA			100			kHz
504	fo()	Cut-off Frequency	V(NIi)= constant, sinussoidal waveform, I(DPi)= 660nA, I(DNi)= 606nA			200			kHz
505	fo()	Cut-off Frequency	R(VCC/NIi)= $50kΩ$, R(NIi/GND)= $50kΩ$, CL()= $30pF$			50	80		kHz
506	Vc(S)hi	Clamp Voltage hi	Vc()hi= V()-VCC; I()= 3mA			0.4		1.5	V
507	Vc(S)lo	Clamp Voltage lo	I()= -3mA			-1.5		-0.4	V

APPLICATIONS INFORMATION

Wiring of the analog outputs NI0..2

The analog outputs each consist of two current sources in a push-pull configuration. One of these works towards GND as a sink, the other works as a source coming from VCC. The voltage swing at the output pins NI0..2 is determined by the external wiring - the saturation voltage of the current sources must be taken into account.

The simplest configuration is to connect the outputs to a voltage divider consisting of two resistors, wired from VCC against GND (with $50k\Omega$ respectively, for example). Any resulting load capacities can reduce the cutoff frequency of the analog signals.

In view of the suppression of the supply voltage, however it may be preferable to use an op-amp as a current-voltage converter (transconductance amplifier) if the reference potential is suitably stable.

This specification is for a newly developed product. iC-Haus therefore reserves the right to change or update, without notice, any information contained herein, design and specification; and to discontinue or limit production or distribution of any product versions. Please contact iC-Haus to ascertain the current data.

Copying -- even as an excerpt -- is only permitted with iC-Haus approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover (Hannover-Messe).

We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to.

Rev C1, Page 6/6

ORDERING INFORMATION

Туре	Package	Order designation
iC-OF	-	iC-OF Chip
iC-OF iC-OF	BLCC OF3C BLCC OF3C-ET	iC-OF-BLCC OF3C iC-OF BLCC OF3C-ET

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH

Tel +49-6135-9292-0

Am Kuemmerling 18

D-55294 Bodenheim

GERMANY

Tel +49-6135-9292-192

http://www.ichaus.com

E-mail sales@ichaus.com

Appointed local distributors: http://www.ichaus.de/support_distributors.php