iC-GD

UNIVERSAL I/O INTERFACE

Rev A1, Page 1/55

FEATURES

- Two channels, each configurable as input or output
- Low-side and high-side switches with up to 500 mA per channel, current limitation, current measurement, status messages, cable break detection, freewheeling and reverse polarity protection, paralleling of both channels possible
- Output of $\pm 10 \mathrm{~V}$ or $0 / 4 \ldots 20 \mathrm{~mA}$ with 14 bit resolution
- Measurement of $\pm 10 \mathrm{~V}, \pm 1 \mathrm{~V}, \pm 100 \mathrm{mV}, \pm 10 \mathrm{mV}, \pm 20 \mathrm{~mA}$, $4 . . .20 \mathrm{~mA}$ with 14 bit resolution
- Input for Pt100, Pt1000 temperature sensors
- Multifunctional 32 bit counter
- Digital output with pulse-width modulation option
- Internal temperature measurement with 1 K resolution
- SPI interface
- Calibration and configuration by external EEPROM via serial interface
- Error message with hysteresis at overtemperature, overload and undervoltage
- Shutdown of the outputs in case of error
- Inputs/outputs protected against ESD

APPLICATIONS

- PLC control systems
- Data acquisition
- Sensor interfaces

PACKAGES

QFN38 $5 \mathrm{~mm} \times 7 \mathrm{~mm}$

BLOCK DIAGRAM

iC-GD

UNIVERSAL I/O INTERFACE

Rev A1, Page 2/55

DESCRIPTION

iC-GD is an interface IC with two independent channels each of which is configurable for a variety of measurement and control signal transmission tasks.

Both channels, each with 4 pins, can be addressed via the SPI interface and configured by an external EEPROM or SPI.

When configured as low-side or high-side drivers, each channel is capable of high driving currents (at least 500 mA) with integrated current measurement and current limitation. Drivers are short-circuit proof by shut-down in case of overtemperature or overload.

The high/low-side drivers can be connected in parallel for higher currents and feature an active freewheeling circuit and reverse polarity protection.

Operated as an analog output, the iC-GD provides voltages in the range of $\pm 10 \mathrm{~V}$ or currents in the range of 0 or 4 to 20 mA with a resolution of 14 bits.

When configured as an analog input, a 14-bit ADC processes differential voltages in the range of $\pm 10 \mathrm{~V}$, $\pm 1 \mathrm{~V}, \pm 100 \mathrm{mV}, \pm 10 \mathrm{mV}$ or currents in the range of $\pm 20 \mathrm{~mA}$ or 4 to 20 mA .

The analog inputs can be bandwidth-limited over a wide range from 2 kHz to 0.5 Hz by means of a configurable input filter. Additionally a fast mode with an 8 kHz limit is available.

Pt temperature sensors (in 2-, 3- and 4-wire technology) and various thermocouples can also be con-
nected to provide the absolute temperature with a resolution of 0.1 K after calibration.

After calibration an integrated temperature sensor also supplies the absolute chip temperature with a resolution of 1 K .

In digital input mode, two 32-bit counters are available which can be configured for counting direction, start value, end value or used in combination as a single gated counter. An LED signals the state of the digital input even without the iC-GD being powered.

The digital output can be operated as a pulse-width modulator with a resolution of either 125 ns or $16 \mu \mathrm{~s}$ and a cycle time of up to 8.192 ms or 1.048 s .

If all pins of a channel are not used, it is possible to use certain functions of a channel simultaneously. Thus, for example, the high-side or low-side driver or the digital input respectively can be operated independent of voltage and current measurement or voltage output.

A variety of monitoring functions are available, including supply voltage, cable breaks and overload conditions to provide comprehensive system diagnostics.

The iC-GD is calibrated via SPI and via the relevant pins.

Each IC holds a unique serial number for identification.

iC-GD

UNIVERSAL I/O INTERFACE

Rev A1, Page 3/55

PACKAGING INFORMATION QFN38 $5 \mathrm{~mm} \times 7 \mathrm{~mm}$ to JEDEC Standard

PIN CONFIGURATION QFN38 $5 \mathrm{~mm} \times 7 \mathrm{~mm}$

PIN FUNCTIONS

No. Name Function
1 ADR0 Address 0 input
2 ADR1 Address 1 input
3 ADR2 Address 2 input
4 VCC Supply voltage 3.3... 5 V
5 GNDL Logic Ground
6 TEST Test pin

PIN FUNCTIONS
No. Name Function
7 VPD 5V voltage output
8 VRPH Modulator mid voltage
9 VREF Modulator reference voltage
10 LED1 LED1 driver output
11 VNB Supply voltage -15V
12 UN1 Voltage negative channel 1
13 UI1 Voltage current channel 1
14 UP1 Voltage positive channel 1
15 IA1 Current output analog/digital channel 1
16 GNDP Power Ground
17 VDA Supply voltage 24 V
18 IA2 Current output analog/digital channel 2
19 UP2 Voltage positive channel 2
20 UI2 Voltage current channel 2
21 UN2 Voltage negative channel 1
22 VB Supply voltage +15 V
23 LED2 LED2 driver output
24 VPA 5 V voltage output
25 RP Resistor pin 1
26 RN Resistor pin 2
27 GNDA Analog Ground
28 NRES Reset input (low active)
29 RDY Ready output
30 NCS Chip select input (low active)
31 SCLK SPI clock input
32 SDI SPI data input
33 SDO SPI data output
34 SYNC1 Synchronization channel 1
35 SYNC2 Synchronization channel 2
36 IRQ Interrupt output
37 SCL Serial clock input
38 SDA Serial data input

The Thermal Pad is to be connected to a Ground Plane (GNDP) on the PCB.

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

Item No.	Symbol	Parameter	Conditions	Min.	Max.	Unit
G001	VB	Power Supply at VB	Referenced to GNDP	-0.3	18	V
G002	I(VB)	Current in VB		-10	100	mA
G003	VNB	Power Supply at VNB	Referenced to GNDP	-18	0.3	V
G004	I(VNB)	Current in VNB		-10	100	mA
G005	V(VDA)	Voltage at VDA, IA1, IA2	Referenced to the lowest voltage at GNDP, VDA, IA1, IA2; Referenced to the highest voltage of VB, VDA, IA1, IA2	-48	48	V
G006	I(VDA)	Current in VDA		-100	800	mA
G007	V()	Voltage at UP1, UP2, UI1, UI2	Referenced to the lowest voltage of GNDP, VNB, UP1, UP2, UI1, UI2; Referenced to the highest voltage of GNDP, VB, UP1, UP2, UI1, UI2	-48	48	V
G008	V()	Voltage at UN1, UN2	Referenced to GNDP	-48	48	V
G009	V(VCC)	Voltage at VCC	Referenced to GNDL	-0.3	7	V
G010	I(VCC)	Current in VCC		-50	20	mA
G011	1()	Current in IA1, IA2		-800	800	mA
G012	I()	Current in UP1, UP2, UI1, UI2, UN1, UN2		-50	50	mA
G013	V(LED)	Voltage at LED1, LED2	Referenced to GNDP	-0.3	9	V
G014	I(LED)	Current in LED1, LED2		-30	100	mA
G015	V()	Voltage at ADR2, ADR1, ADR0, SCL, SDA, NCS, SCLK, SDI, SDO, NIRQ, NRES, RDY, SYNC1, SYNC2	Referenced to GNDL	-0.3	7	V
G016	I()	Current in ADR2, ADR1, ADR0, NCS, SCLK, SDI, NRES		-4	4	mA
G017	I()	Current in SCL, SDA		-4	120	mA
G018	1()	Current in IRQ, RDY, SYNC1, SYNC2		-25	220	mA
G019	1()	Current in SDO		-260	220	mA
G020	V()	Voltage at VPA, VPD, VREF, VRPH, TEST	Referenced to GNDP	-0.3	7	V
G021	I()	Current in VPA, VPD, VREF, VRPH, TEST		-4	4	mA
G022	$V()$	Voltage at RP, RN, GNDA	Referenced to GNDP	-0.3	2	V
G023	I()	Current in RP, RN, GNDA, GNDL		-1	1	mA
G024	Vd()	ESD Susceptibility at all pins	HBM, 100 pF discharged through $1.5 \mathrm{k} \Omega$		2	kV
G025	Tj,op	Operating Junction Temperature		-40	125	${ }^{\circ} \mathrm{C}$
G026	Ts	Storage Temperature		-40	125	${ }^{\circ} \mathrm{C}$

THERMAL DATA

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
T01	Ta	Operating Ambient Temperature Range		-20		85	${ }^{\circ} \mathrm{C}$
T02	Rthja	Thermal Resistance Chip/Ambient	Surface mounted, thermal pad soldered to approx. $2 \mathrm{~cm}^{2}$ heat sink		25	35	K/W
T03	Rthjc	Thermal Resistance Chip/Case			4		K/W

ELECTRICAL CHARACTERISTICS

Operating conditions: $\mathrm{VB}=14.5 \ldots 16 \mathrm{~V}, \mathrm{VNB}=-15 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{VDA}=18 \ldots 36 \mathrm{~V}$ or $\mathrm{VDA}=\mathrm{VB}, \mathrm{VCC}=3.3 \ldots 5 \mathrm{~V} \pm 5 \%, \mathrm{RREF}=20 \mathrm{k} \Omega \pm 0.1 \% \mathrm{TK} 5$, $\mathrm{Tj}=-20 \ldots 105^{\circ} \mathrm{C}$, if not otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Total Device							
001	VB	Permissible Supply Voltage	Referenced to GNDP	14.5	15	16	V
002	I(VB)	Supply Current in VB	No load, configuration as digital IO, current output (DI, DO, CO) No load, configuration as voltage/current input (VI, CI) No load, both channels configured as voltage output (VO)	8 12 14	$\begin{gathered} 11 \\ 16.5 \\ 18 \end{gathered}$	$\begin{aligned} & 14 \\ & 18 \\ & 22 \end{aligned}$	mA mA mA
003	VNB	Permissible Supply Voltage	Referenced to GNDP	-16	-15	-14	V
004	I(VNB)	Supply Current in VNB	No load No load, both channels configured as voltage outputs	$\begin{aligned} & -10 \\ & -16 \end{aligned}$	$\begin{gathered} -5 \\ -10 \end{gathered}$	$\begin{aligned} & -2 \\ & -4 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
005	VCC	Permissible Supply Voltage	Referenced to GNDL	3.135	3.3	5.25	V
006	I(VCC)	Supply Current in VCC	No load, VCC $=3.3 \mathrm{~V}$ No load, VCC $=5 \mathrm{~V}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 5 \\ & 9 \end{aligned}$	$\begin{gathered} 6 \\ 12 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
007	VDA	Permissible Supply Voltage	Referenced to GNDP, VDA not connected to VB	18		36	V
008	VDA	Permissible Supply Voltage	Referenced to GNDP, VDA connected to VB	14.5		16	V
009	I(VDA)	Supply Current in VDA	No load, VDA not connected to VB	0.2	0.6	2	mA
010	I(VDA)	Supply Current in VDA	No load, VDA connected to VB; Configuration as DI, DO, CO Configuration as VI, Cl Both channels configured as VO with supply current in VB (Item No. 002)	$\begin{gathered} 9 \\ 13 \\ 15 \end{gathered}$	$\begin{gathered} 12 \\ 16.5 \\ 19 \end{gathered}$	$\begin{aligned} & 15 \\ & 19 \\ & 23 \end{aligned}$	mA mA mA
011	Vc() lo	Clamp Voltage lo at RP, RN, SCL SDA, NCS, ADR2, ADR1, ADR0, SCLK, SDI, SDO, IRQ, GNDA, VB, VCC, LED1, LED2, SYNC1, SYNC2, TEST, NRES, RDY, GNDL, VRPH, VREF	vs. GNDP, I() = -10 mA	-1.2		-0.3	V
012	Vc() lo	Clamp Voltage lo at VNB	vs. GNDP, I()$=-2 \mathrm{~mA}$	-36		-18	V
013	Vc() lo	Clamp Voltage lo at VDA, IAx, UPx, Ulx, UNx	vs. GNDP, $I(V D A)=-3 m A, l(I A x)=-12 m A$, $I(U P x)=-3 m A, I(U l x)=-6 m A, I(U N x)=-3 m A$	-60		-46	V
014	Vc() lo	Clamp Voltage lo at VDA	vs. $I A x, I()=-5 m A$	-60		-46	V
015	Vc() lo	Clamp Voltage lo at VDA, IA1x, UPx, Ulx	$\begin{aligned} & \text { vs. VB, } I(V D A)=-5 m A, I(I A x)=-12 m A, \\ & I(U P x, U l x)=-3 m A \end{aligned}$	-60		-46	V
016	Vc() lo	Clamp Voltage lo at UPx, Ulx	vs. VNB, I()$=-4 \mathrm{~mA}$	-60		-46	V
017	Vc() hi	Clamp Voltage hi at VNB	vs. GNDP, I()$=2 \mathrm{~mA}$	0.3		1.2	V
018	Vc() hi	Clamp Voltage hi at RP, RN, SCL, SDA, NCS, ADR2, ADR1, ADR0, SCLK, SDI, SDO, IRQ, GNDA, VCC, LED1, LED2, SYNC1, SYNC2, TEST, NRES, RDY, VRPH, VREF	vs. GNDP, I()$=2 \mathrm{~mA}$	6		18	V
019	Vc() hi	Clamp Voltage hi at VB	vs. GNDP, I()$=2 \mathrm{~mA}$	18		36	V
020	Vc() hi	Clamp Voltage hi at VDA, IAx, UPx, UIx, UNx	$\begin{aligned} & \text { vs. GNDP; } \\ & \mathrm{l}(\mathrm{VDA})=5 \mathrm{~mA} \\ & \mathrm{l}(\mathrm{IAx})=15 \mathrm{~mA} \\ & \mathrm{l}(\mathrm{UPx})=4 \mathrm{~mA}, \mathrm{I}(\mathrm{Ulx})=10 \mathrm{~mA}, \mathrm{I}(\mathrm{UNx})=3 \mathrm{~mA} \\ & \mathrm{Tj}=-20^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 36 \\ & 33 \\ & 46 \\ & 44 \end{aligned}$		$\begin{aligned} & 48 \\ & 48 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$
021	Vc() hi	Clamp Voltage hi at VDA	vs. $\mathrm{IAx}, \mathrm{I}()=2 \mathrm{~mA}$	36		52	V
022	Vc() hi	Clamp Voltage hi at VDA, IA1x, UPx, Ulx	$\begin{aligned} & \text { vs. GNDP; } \\ & \mathrm{I}(\mathrm{VDA})=5 \mathrm{~mA} \\ & \mathrm{I}(\mathrm{IAx})=15 \mathrm{~mA} \\ & \mathrm{I}(\mathrm{UPx})=3 \mathrm{~mA}, \mathrm{I}(\mathrm{Ulx})=3 \mathrm{~mA}, \mathrm{VNB}=0 \mathrm{~V} \\ & \mathrm{Tj}=-20^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 36 \\ 31.5 \\ 46 \\ 44 \end{gathered}$		$\begin{aligned} & 52 \\ & 48 \\ & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$

ELECTRICAL CHARACTERISTICS

Operating conditions: $\mathrm{VB}=14.5 \ldots 16 \mathrm{~V}, \mathrm{VNB}=-15 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{VDA}=18 \ldots 36 \mathrm{~V}$ or $\mathrm{VDA}=\mathrm{VB}, \mathrm{VCC}=3.3 \ldots 5 \mathrm{~V} \pm 5 \%, \mathrm{RREF}=20 \mathrm{k} \Omega \pm 0.1 \% \mathrm{TK} 5$, $\mathrm{Tj}=-20 \ldots 105^{\circ} \mathrm{C}$, if not otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
023	Vc() hi	Clamp Voltage hi at UPx, Ulx	$\begin{aligned} & \text { vs. VNB, } \mathrm{I}()=3 \mathrm{~mA} \\ & \mathrm{Tj}=-20^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 46 \\ & 44 \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
024	Ipu()	Pull-up Current from SCL, SDA, NCS, ADR2, ADR1, ADR0, SYNC1, SYNC2, NRES, RDY, SCLK, SDI	$\mathrm{V}(\mathrm{)}=0.8 * \mathrm{VCC}$	-100		-10	$\mu \mathrm{A}$
025	lpu()	Pull-up Current from SCL, SDA, NCS, ADR2, ADR1, ADR0, SYNC1, SYNC2, NRES, RDY, SCLK, SDI	$V()=0 \mathrm{~V}$	-220		-20	$\mu \mathrm{A}$
026	Vt() hi	Threshold Voltage hi at inputs SCLK, SDI, NRES, SCL, SDA, NCS, ADR2, ADR1, ADR0, SYNC1, SYNC2				2	V
027	Vt ()lo	Threshold Voltage lo at inputs SCLK, SDI, NRES, SCL, SDA, NCS, ADR2, ADR1, ADR0, SYNC1, SYNC2		0.8			V
028	$\mathrm{Vt}($)hys	Hysteresis at inputs SCLK, SDI, NRES, RDY, SCL, SDA, NCS, ADR2, ADR1, ADR0, SYNC1, SYNC2		100	200	400	mV
029	Vs()lo	Saturation Voltage lo at outputs SDO, NIRQ, SYNC1, SYNC2, RDY	$\begin{aligned} & \mathrm{l}()=8 \mathrm{~mA}, \mathrm{SDO}=\mathrm{NIRQ}=\mathrm{SYNC1}=\mathrm{SYNC2}= \\ & \mathrm{RDY}=\mathrm{lo} \end{aligned}$			0.4	V
030	Vs()lo	Saturation Voltage lo at outputs SCL, SDA	I()$=4 \mathrm{~mA}, \mathrm{SCL}=\mathrm{SDA}=\mathrm{lo}$			0.4	V
031	$\mathrm{Vs}($) hi	Saturation Voltage hi at output SDO	Vs()$=\mathrm{VCC}-\mathrm{V}(), \mathrm{I}()=-8 \mathrm{~mA}, \mathrm{SDO}=\mathrm{hi}$			0.4	V
032	Isc()lo	Short-Circuit Current lo in outputs SDO, IRQ, SYNC1, SYNC2, RDY	$\begin{aligned} & \mathrm{V}()=\mathrm{VCC}, \mathrm{SDO}=\mathrm{IRQ}=\mathrm{SYNC} 1=\mathrm{SYNC} 2= \\ & \mathrm{RDY}=\mathrm{lo} \end{aligned}$	20		200	mA
033	Isc()lo	Short-Circuit Current lo in outputs SCL, SDA	$\mathrm{V}(\mathrm{)}=\mathrm{VCC}, \mathrm{SCL}=\mathrm{SDA}=1 \mathrm{l}$	10		100	mA
034	Isc()hi	Short-Circuit Current hi from output SDO	V()$=0 \mathrm{~V}, \mathrm{SDO}=\mathrm{hi}$	-250		-25	mA
035	tRESIo	Minimum Time lo at NRES		300			ns
Bias							
201	V (RP)	Voltage at RP	$\begin{aligned} & \text { RREF }=20 \mathrm{k} \Omega \pm 0.1 \% \text { vs. RN, } \\ & \operatorname{ATK}(7: 0)=0 \times 80 \end{aligned}$	1.1	1.185	1.28	V
202	$\mathrm{V}(\mathrm{RP}) \mathrm{ab}$	Calibration Accuracy of voltage at RP	RREF $=20 \mathrm{k} \Omega \pm 0.1 \%$ vs. RN	-0.06		0.06	\%
203	V(RP),TK	Temperature Dependency of voltage at RP	RREF $=20 \mathrm{k} \Omega \pm 0.1 \%$ vs. RN , bandgap calibrated	-0.065		0.065	\%
204	Isc,max()	Short-Circuit Current lo in RP	$V(R P)=0 \mathrm{~V}$	100	250	500	$\mu \mathrm{A}$
Oscillator							
301	fos	Oscillator Frequency	Initial, not calibrated	1.6	2	2.5	MHz
302	fos, PLL	Oscillator Frequency PLL	Initial, not calibrated	12.8	16	20	MHz
303	fos	Calibration Accuracy of oscillator frequency	$\mathrm{fos}_{\text {nom }}=16 \mathrm{MHz}$	-1.5		1.5	\%
304	fos,TK	Temperature Dependency of oscillator frequency	$\mathrm{foS}_{\text {nom }}=16 \mathrm{MHz}$	-3		3	\%
305	V (pll,fos)	Clock Divider Ratio			8		

Rev A1, Page 8/55

ELECTRICAL CHARACTERISTICS

Operating conditions: $\mathrm{VB}=14.5 \ldots 16 \mathrm{~V}, \mathrm{VNB}=-15 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{VDA}=18 \ldots 36 \mathrm{~V}$ or $\mathrm{VDA}=\mathrm{VB}, \mathrm{VCC}=3.3 \ldots 5 \mathrm{~V} \pm 5 \%, \mathrm{RREF}=20 \mathrm{k} \Omega \pm 0.1 \% \mathrm{TK} 5$, $\mathrm{Tj}=-20 \ldots 105^{\circ} \mathrm{C}$, if not otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
SPI Interface							
501	fscl	Maximum Permissible Clock Frequency I2C				100	kHz
502	fclk	Maximum Permissible Clock Frequency SPI	Internal oscillator calibrated	12.5			MHz
503	fclk_na	Maximum Permissible Clock Frequency SPI	Internal oscillator not calibrated	6.0			MHz
504	tCL	Minimum Time SCLK low	Low defined by TTL threshold Vt()lo	32.5			ns
505	tCH	Minimum Time SCLK high	High defined by TTL threshold Vt()hi	22			ns
506	tSU	Setup Time: SDI valid before SCLK \rightarrow low	Validity defined by Vt() lo or Vt() hi	3			ns
507	tH	Hold Time: SDI valid to SCLK \rightarrow low	Validity defined by Vt() lo or Vt() hi	15			ns
508	tPOmin	Output Delay SDO \rightarrow valid to SCLK \rightarrow high	Validity defined by Vs() lo or $\mathrm{Vs}($) hi, $\mathrm{CL}(\mathrm{SDO}) \leq 30 \mathrm{pF}$	0			ns
509	tPOmax	Output Delay SDO \rightarrow valid to SCLK \rightarrow high	Validity defined by Vs()lo or Vs()hi, $C L(S D O) \leq 30 \mathrm{pF}$			30	ns
510	tPOT	Output Delay SDO \rightarrow tri-state to NCS \rightarrow high				50	ns
511	tCSU	Setup Time: NCS \rightarrow low before SCLK \rightarrow low	Internal oscillator calibrated	50			ns
512	tCSU_na	Setup-Time: NCS \rightarrow low before SCLK \rightarrow low	Internal oscillator not calibrated	75			ns
513	tCSH	Hold Time: NCS \rightarrow high to SCLK \rightarrow high	Internal oscillator calibrated	200			ns
514	tCSH_na	Hold Time: NCS \rightarrow high to SCLK \rightarrow high	Internal oscillator not calibrated	300			ns
515	tD	Minimum Time NCS high	hi defined by TTL threshold Vt()hi, internal oscillator calibrated	100			ns
516	tD_na	Minimum Time NCS high	hi defined by TTL threshold Vt()hi, internal oscillator not calibrated	150			ns
5V Regulator VPA, VPD							
601	V(VPA)	Voltage at VPA	CVPA $=100 \mathrm{nF}$, bandgap calibrated	5	5.25	5.5	V
602	Isc(VPA)	Short-Circuit Current from VPA	VPA $=0 \mathrm{~V}$	-100		-10	mA
603	VtUlo	Lower Undervoltage Threshold VPA		3.5	4		V
604	VtUhi	Upper Undervoltage Threshold VPA			4.4	4.75	V
605	VtUhys	Hysteresis Undervoltage VPA		200	400	800	mV
606	V(VPD)	Voltage at VPD	CVPD $=100 \mathrm{nF}$, bandgap calibrated	5	5.25	5.5	V
607	Isc(VPD)	Short-Circuit Current from VPD	$V P D=0 \mathrm{~V}$	-120		-15	mA
608	VtUlo	Lower Undervoltage Threshold VPD		3.3	3.8		V
609	VtUhi	Upper Undervoltage Threshold VPD			4.2	4.6	V
610	VtHys	Hysteresis Undervoltage VPD		200	400	800	mV
Voltage Monitor VB, VNB, VCC, VDA							
701	Vt(VB)lo	Lower Undervoltage Threshold VB		12.6	13.3		V
702	$\mathrm{Vt}(\mathrm{VB}) \mathrm{hi}$	Upper Undervoltage Threshold VB			13.9	14.4	V
703	V(VB)hys	Hysteresis Undervoltage VB	VBhys $=\mathrm{Vt}(\mathrm{VB}) \mathrm{hi}-\mathrm{Vt}(\mathrm{VB}) \mathrm{lo}$	200	500	800	mV
704	Vt(VNB)lo	Upper Undervoltage Threshold VNB			-13	-12.3	V

Rev A1, Page 9/55

ELECTRICAL CHARACTERISTICS

Operating conditions: $\mathrm{VB}=14.5 \ldots 16 \mathrm{~V}, \mathrm{VNB}=-15 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{VDA}=18 \ldots 36 \mathrm{~V}$ or $\mathrm{VDA}=\mathrm{VB}, \mathrm{VCC}=3.3 \ldots 5 \mathrm{~V} \pm 5 \%, R R E F=20 \mathrm{k} \Omega \pm 0.1 \% \mathrm{TK} 5$, $\mathrm{Tj}=-20 \ldots 105^{\circ} \mathrm{C}$, if not otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
705	Vt(VNB)hi	Lower Undervoltage Threshold VNB		-13.9	-13.5		V
706	V(VNB)hys	Hysteresis Undervoltage VNB	VNBhys $=$ Vt(VNB) hi $-\mathrm{Vt}(\mathrm{VNB}$) lo	-800	-500	-200	mV
707	Vt(VCC)lo	Lower Undervoltage Threshold VCC		2.8	2.9		V
708	Vt(VCC)hi	Upper Undervoltage Threshold VCC			3	3.13	V
709	V(VCC)hys	Hysteresis Undervoltage VCC	VCChys $=$ Vt(VCC) $\mathrm{hi}-\mathrm{Vt}(\mathrm{VCC}) \mathrm{lo}$	50	100	300	mV
710	Vt(VDA)lo	Lower Undervoltage Threshold VDA	Bit VDA_VB = lo	15	16		V
711	Vt(VDA)hi	Upper Undervoltage Threshold VDA	Bit VDA_VB = lo		16.5	17.5	V
712	V(VDA)hys	Hysteresis Undervoltage VDA	$\begin{aligned} & \text { VDAhys = Vt(VDA)hi }-\mathrm{Vt}(\mathrm{VDA}) l \mathrm{o} \\ & \text { bit VDA_VB }=\mathrm{lo} \end{aligned}$	250	500	1000	mV
713	$\Delta(\mathrm{VB}, \mathrm{VDA})$	Error Message at voltage difference between VB and VDA	$\begin{aligned} & \Delta \mathrm{V}(\mathrm{VB}, \mathrm{VDA})=\mathrm{MAX}(\|\mathrm{VB}-\mathrm{VDA}\|), \\ & \text { bit VDA_VB = hi } \end{aligned}$	0.75			V
Temperature Monitor							
901	T1off	Thermal Shutdown Temperature	Increasing temperature Tj	125	140	155	${ }^{\circ} \mathrm{C}$
902	T1on	Thermal Shutdown Reset Temperature	Decreasing temperature Tj	115	130	145	${ }^{\circ} \mathrm{C}$
903	T1hys	Thermal Hysteresis 1	T1hys = T1off - T1on	5	10	20	${ }^{\circ} \mathrm{C}$
904	T2off	Thermal Shutdown Temperature 2	Increasing temperature Tj	145	160	175	${ }^{\circ} \mathrm{C}$
905	T2on	Thermal Shutdown Reset Temperature 2	Decreasing temperature Tj	135	150	165	${ }^{\circ} \mathrm{C}$
906	T2hys	Thermal Hysteresis 2	T2hys = T2off - T2on	5	10	25	${ }^{\circ} \mathrm{C}$
907	dToff	Difference Thermal Shutdown Temperature	dToff = T2off - T1off	10	20	40	${ }^{\circ} \mathrm{C}$
908	dTon	Difference Thermal Shutdown Reset Temperature	$\mathrm{dTon}=\mathrm{T} 2 \mathrm{on}-\mathrm{T} 1 \mathrm{on}$	10	20	40	${ }^{\circ} \mathrm{C}$
909	R()	Temperature Converter Resolution	Range -64... $191^{\circ} \mathrm{C}$	8			Bit
910	R()	Temperature Converter Range	Minimum usable temperature range	-41		183	${ }^{\circ} \mathrm{C}$
911	Toffset	Maximum Temperature Offset	Calibration via AOCT(4:0)	-16		15	LSB
912	Tdiff()	Temperature Converter Difference	After calibration; $\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=-20 . . .105^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -1 \\ & -2 \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Digital Outputs IAx, $\mathrm{x}=1,2$							
B01	Vs() hi	Saturation Voltage hi at IAx	$\begin{aligned} & \mathrm{Vs}(\mathrm{IAx}) \mathrm{hi}=\mathrm{VDA}-\mathrm{V}(), \mathrm{I}(\mathrm{IAx})=-200 \mathrm{~mA}, \\ & \mathrm{~T}<\mathrm{T} 2 \mathrm{on} ; \\ & -20^{\circ} \mathrm{C} \\ & 27^{\circ} \mathrm{C} \\ & 105^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.7 \\ & 0.9 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
B02	Vs() hi	Saturation Voltage hi at IAx	$\mathrm{Vs}(\mathrm{IAx}) \mathrm{hi}=\mathrm{VDA}-\mathrm{V}(), \mathrm{I}(\mathrm{IAx})=-500 \mathrm{~mA},$ high-side driver active, $\mathrm{T}<\mathrm{T} 2 \mathrm{on}$			2	V
B03	Isc()hi	Short-Circuit Current hi from IAx	$\text { VDA }-36 \mathrm{~V}<\mathrm{V}(\mathrm{IAx})<\mathrm{VDA}-3 \mathrm{~V} \text {, }$ high-side driver active, $\mathrm{T}<\mathrm{T} 1$ on	-800		-505	mA
B04	Ipu()	Pull-up Current	Hi -side driver configuration, $\mathrm{IAx}=\mathrm{lo}$, VDA $=18 \ldots 32 \mathrm{~V}$; $V()=V D A-2 V \ldots V B$ $V()=V B \ldots V B-3 V$ $V()=V B-3 V . . .0 V$	$\begin{aligned} & -100 \\ & -120 \\ & -120 \end{aligned}$		$\begin{aligned} & -10 \\ & -40 \\ & -80 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
B05	Vpu()	Pull-up Voltage	Vpu()$=\mathrm{V}()-\mathrm{VDA}, \mathrm{I}()=-5 \ldots 5 \mu \mathrm{~A}$, hi-side driver configuration, $\mathrm{IAx}=\mathrm{lo}$, pull-up current active	-1.8			V
B06	Vto()hi	Upper Trigger Threshold hi at IAx	Vto()$=\mathrm{VDA}-\mathrm{V}(\mathrm{IAx})$	2.2	2.45	2.9	V
B07	Vtu()hi	Lower Trigger Threshold hi at IAx	Vtu()$=\mathrm{VDA}-\mathrm{V}(\mathrm{IAx})$	2.3	2.7	3	V

Rev A1, Page 10/55

ELECTRICAL CHARACTERISTICS

Operating conditions: $\mathrm{VB}=14.5 \ldots 16 \mathrm{~V}, \mathrm{VNB}=-15 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{VDA}=18 \ldots 36 \mathrm{~V}$ or $\mathrm{VDA}=\mathrm{VB}, \mathrm{VCC}=3.3 \ldots 5 \mathrm{~V} \pm 5 \%, \mathrm{RREF}=20 \mathrm{k} \Omega \pm 0.1 \% \mathrm{TK} 5$, $\mathrm{Tj}=-20 \ldots 105^{\circ} \mathrm{C}$, if not otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
B08	Vhys()hi	Hysteresis Trigger Threshold hi at IAx	Vhys,hi = Vto()hi - Vtu()hi	100	250	600	mV
B09	Vs()lo	Saturation Voltage lo at IAx	$\mathrm{I}(\mathrm{IAx})=200 \mathrm{~mA}$, low-side driver active, T < T2on; $\mathrm{Tj}=-20^{\circ} \mathrm{C}$ $\mathrm{Tj}=25^{\circ} \mathrm{C}$ $\mathrm{Tj}=105^{\circ} \mathrm{C}$			$\begin{gathered} 0.6 \\ 0.8 \\ 0.94 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
B10	Vs()lo	Saturation Voltage lo at IAx	$\mathrm{I}(\mathrm{IAx})=500 \mathrm{~mA}$, low-side driver active, T < T2on			2.35	V
B11	Isc()lo	Short-Circuit Current lo from IAx	$3 \mathrm{~V}<\mathrm{V}(\mathrm{IAx})<36 \mathrm{~V}$, low-side driver active, T < T1on	505		800	mA
B12	$\operatorname{lpd}()$	Pull-down Current	Lo-side driver configuration, IAx = hi, $V D A=18 . . .32 \mathrm{~V}$ $V()=2 V \ldots V B-3 V, V(L E D)<3 V$ $V()=V B-3 V \ldots V B$, $V()=V B \ldots V D A$	$\begin{aligned} & 15 \\ & 15 \\ & 30 \end{aligned}$	20	$\begin{gathered} 25 \\ 80 \\ 160 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
B13	Vpd()	Pull-down Voltage	I()$=-5 \ldots 5 \mu \mathrm{~A}$, lo-side driver configuration, IAx = hi, pull-down current active			1	V
B14	Vs() lo, r	Saturation Voltage lo at IAx	$I(I A x)=-200 \mathrm{~mA}$, low-side driver active, T < T2on	-1.2	-0.6	0	V
B15	Ir,max()	Maximum Reverse Current from IAx	$-2 \mathrm{~V}<\mathrm{V}()<\mathrm{GNDP}$, low-side driver active $\mathrm{VB}-36 \mathrm{~V}<\mathrm{V}()<-2 \mathrm{~V}$	$\begin{gathered} \hline-800 \\ -10 \\ \hline \end{gathered}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
B16	Vto()lo	Upper Trigger Threshold lo at IAx	ENDOSC_x $=10$	2.35	2.7	3	V
B17	Vtu()lo	Lower Trigger Threshold lo at IAx	ENDOSC_x $=10$	2.2	2.5	2.9	V
B18	Vhys()lo	Hysteresis Trigger Threshold lo at IAx	ENDOSC_x = lo, Vhys,lo = Vto()lo - Vtu()lo	100	300	500	mV
B19	Ilk()	Leakage Current in IAx	Output, pull-up, pull-down current inactive; $\begin{aligned} & \mathrm{V}(\mathrm{IAx})=0 \mathrm{~V} \ldots \mathrm{VB}-3 \mathrm{~V} \\ & \mathrm{~V}(\mathrm{IAx})=\mathrm{VB}-3 \mathrm{~V} \ldots \mathrm{VDA} \end{aligned}$	$\begin{aligned} & -1 \\ & -1 \end{aligned}$		$\begin{gathered} 1 \\ 120 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
B20	$\operatorname{Ir}()$	Reverse Current in IAx	$\mathrm{V}(\mathrm{IAx})>\mathrm{VDA}+0.1 \mathrm{~V}$	0		2	mA
B21	f()max,out	Maximum Output Frequency	Digital output as output	125			kHz
B22	f()max,in	Maximum Input Frequency	Digital output as input	125			kHz
B23	td(),ol	Delay to open-load detection		1		2	ms
B24	Vf()hi	Free-Wheeling Voltage hi at IAx	Low-side driver configuration, vs. GND, $\mathrm{I}(\mathrm{IAx})=80 \mathrm{~mA}, \mathrm{IAx}=\mathrm{hi}, \mathrm{L}=10 \mathrm{mH}$	36	41	48	V
B25	Vf()lo	Free-Wheeling Voltage lo at IAx	High-side driver configuration, vs. VDA, $I(I A x)=-80 m A, I A x=10, L=10 m H$	-54	-44	-40	V
B26	tr	Rise Time	IAx: $3 \mathrm{~V} \rightarrow 13 \mathrm{~V}$			869	ns
B27	tf	Fall time	IAx: VDA $-3 \mathrm{~V} \rightarrow 8 \mathrm{~V}$, VDA $=18 \ldots 30 \mathrm{~V}$			869	ns
B28	Vto()lo	Upper Threshold lo at IAx	ENDOSC_x $=$ hi	1	1.3	1.6	V
B29	Vtu()lo	Lower Threshold lo at IAx	ENDOSC_x $=$ hi	0.8	1	1.4	V
B30	Vhys()lo	Hysteresis Threshold lo at IAx	ENDOSC_x = hi, Vhys,lo = Vto()lo - Vtu()lo	100	300	500	mV
Digital Inputs IAx, $\mathbf{x}=1,2$							
C01	Vt() hi	Upper Input Threshold			10	11	V
C02	Vt()lo	Lower Input Threshold		5	8		V
C03	Vhys()	Hysteresis at IAx	Vhys() = Vt()hi - Vt()lo	1	2	3	V
C04	Ipu()	Pull-up Current	$\begin{aligned} & \mathrm{V}()=\mathrm{VDA}-3 \ldots 0 \mathrm{~V}, \text { DI_SEL_x=00} \\ & \mathrm{VDA}=18 \ldots 32 \mathrm{~V} \\ & \text { VDA }=18 \ldots 36 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -6 \\ & -6 \end{aligned}$	$\begin{aligned} & -3 \\ & -3 \end{aligned}$	$\begin{aligned} & -2 \\ & -1 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
C05	Vpu()	Pull-up Voltage	Vpu()$=\mathrm{V}()-\mathrm{VDA}, \mathrm{I}()=-1 \mathrm{~mA}$, DI_SEL_x $=00$	-2.5			V

Rev A1, Page 11/55

ELECTRICAL CHARACTERISTICS

Operating conditions: $\mathrm{VB}=14.5 \ldots 16 \mathrm{~V}, \mathrm{VNB}=-15 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{VDA}=18 \ldots 36 \mathrm{~V}$ or $\mathrm{VDA}=\mathrm{VB}, \mathrm{VCC}=3.3 \ldots 5 \mathrm{~V} \pm 5 \%, \mathrm{RREF}=20 \mathrm{k} \Omega \pm 0.1 \% \mathrm{TK} 5$, $\mathrm{Tj}=-20 \ldots 105^{\circ} \mathrm{C}$, if not otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
C06	lpd()	Pull-down Current	Type 1, V() > 15... 30 V , DI_SEL_x $=01$ Type $1, \mathrm{~V}()>30 \ldots 36 \mathrm{~V}$, DI_SEL_x $=01$ Type 2, V() > 11... 30 V , DI_SEL_x $=10$ Type 2, V()$>30 \ldots 36 \mathrm{~V}$, DI_SEL_x $=10$ Type 3, V()$>11 \ldots 30 \mathrm{~V}$, DI_SEL_x $=11$, default (after startup) Type 3, V() > 30... 36 V , DI_SEL_x = 11, default (after startup)	$\begin{gathered} 0.2 \\ 0.4 \\ 4 \\ 4 \\ 0.2 \\ \\ 0.4 \end{gathered}$		$\begin{aligned} & 1 \\ & 6 \\ & 6 \\ & 8 \\ & 1 \end{aligned}$	mA mA mA mA mA mA
C07	lpd()	Pull-down Current	Type 1, V() > 15..30 V, DI_SEL_x = 01 Type $1, \mathrm{~V}()>30 \ldots 36 \mathrm{~V}$, DI_SEL_x $=01$ Type 2, V() > 11... 30 V, DI_SEL_ $x=10$ Type 2, V()$>30 \ldots 36 \mathrm{~V}$, DI_SEL_x $=10$ Type 3, $V()>11 \ldots 30 \mathrm{~V}$, DI_SEL_x $=11$, default (after startup) Type 3, V() > 30... 36 V , DI_SEL_x = 11, default (after startup), external LED connected at Pin LED to GND or Pin LED connected to GND	$\begin{aligned} & 2 \\ & 2 \\ & 6 \\ & 6 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 2.8 \\ 7 \\ 2.8 \end{gathered}$	$\begin{gathered} 6 \\ 8 \\ 10 \\ 12 \\ 6 \\ 8 \end{gathered}$	mA mA mA mA mA mA
C08	Ipd()	Pull-down Current	Type 1, V() $=5 . .15 \mathrm{~V}$, DI_SEL_x $=01$ Type 2, V() $=5 . .11 \mathrm{~V}$, DI_SEL_x $=10$ Type 3, V()=5.. 11 V , DI_SEL_x = 11, default (after startup)	$\begin{gathered} 1.5 \\ 5 \\ 1.5 \end{gathered}$		$\begin{gathered} 6 \\ 10 \\ 6 \end{gathered}$	mA mA mA
C09	Vpd()	Pull-down Voltage	Type 1..3, I() = $100 \mu \mathrm{~A}$, DI_SEL_x = 01, 10, 11			3	V
C10	Ipd()	Pull-down Current	V()$=5 \ldots 11 \mathrm{~V}$, no supply voltage VDA V()$>11 \ldots 30 \mathrm{~V}$, no supply voltage VDA V()$>30 . .36 \mathrm{~V}$, no supply voltage VDA additionally Item No. E05 applies, if an LED at pin LED vs. GNDP is connected or pin LED is connected to GNDP	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$		$\begin{gathered} 15 \\ 8 \\ 10 \end{gathered}$	mA mA mA
C11	f()max	Maximum Input Frequency		150			kHz
LED Output LEDx $\mathrm{x}=1,2$							
E01	Vo()lo	Open-loop Voltage lo at LEDx	Digital input: $\mathrm{V}(\mathrm{IAx})<5 \mathrm{~V}$, digital output: $\mathrm{V}(\mathrm{IAx})<2.2 \mathrm{~V}$	0		0.2	V
E02	Vo()hi	Open-loop Voltage hi at LEDx	Digital input: $\mathrm{V}(\mathrm{IAx})<11 \mathrm{~V}$, digital output: $\mathrm{V}(\mathrm{IAx})>\mathrm{VDA}-2.2 \mathrm{~V}$	3.5		8.5	V
E03	Vs()lo	Saturation Voltage lo at LEDx	$\begin{aligned} & \mathrm{I}(\mathrm{LEDx})=5 \mathrm{~mA}, \\ & \text { digital input: } \mathrm{V}(\mathrm{IAx})=0 \ldots 5 \mathrm{~V} \\ & \text { digital output: } \mathrm{V}(\mathrm{IAx})=0 \ldots 2.2 \mathrm{~V} \end{aligned}$	0	0.2	0.4	V
E04	Isc()hi	Short-Circuit Current hi from LEDx	$0 \mathrm{~V}<\mathrm{V}(\mathrm{LEDx})<3 \mathrm{~V}$, type $1 . .3$ or pull-up current selected by DI_SEL_x, digital input: $\mathrm{V}(\mathrm{IAx})>11 \mathrm{~V}$, digital output: V(IAx) > VDA -2.2 V	-4	-2.5	-2	mA
E05	Isc()hi	Short-Circuit Current hi from LEDx	No supply voltage, digital input: $0 \mathrm{~V}<\mathrm{V}(\mathrm{LEDx})<3 \mathrm{~V}, \mathrm{~V}(\mathrm{IAx})>11 \mathrm{~V}$	-7	-3.5	-1.8	mA
E06	Isc()lo	Short-Circuit Current lo in LEDx	$\begin{aligned} & \mathrm{V}(\mathrm{LEDx})=0.5 \ldots 4 \mathrm{~V}, \\ & \text { digital input: } \mathrm{V}(\mathrm{I} \mathrm{Ax})=0 \ldots 5 \mathrm{~V}, \\ & \text { digital output: } \mathrm{V}(\mathrm{I} \mathrm{Ax})=0 \ldots .2 .2 \mathrm{~V} \end{aligned}$	10		100	mA
Analog Outputs IAx, UPx, UNx, Ulx, x=1,2							
101	Vo ()	Voltage-Output Range at UPx, UNx	Voltage output configuration, $\mathrm{I}(\mathrm{UPx})= \pm 10 \mathrm{~mA}$ or -20... 10 mA in extended current mode (VO_EC_x = 1), after calibration	-10.5		10.499	V
102	Io(UPx)hi	Short-Circuit Current hi	Voltage output configuration, UPx = VNB	-16	-13	-10.5	mA
103	lo(UPx)hi	Short-Circuit Current hi	Voltage output configuration, UPx = VNB, extended current range (VO_EC_x = 1)	-30	-25	-21	mA
104	Io(UPx)lo	Short-Circuit Current lo	Voltage output configuration, UPx = VB	10.5	13	16	mA
105	Vs(UNx)lo	Saturation Voltage lo at UNx	$\mathrm{I}(\mathrm{UNx})=21.5 \mathrm{~mA}$	0	0.9	1.5	V
106	Vs(UNx)lo	Saturation Voltage lo at UNx	$\mathrm{I}(\mathrm{UNx})=-21.5 \mathrm{~mA}$	-1.5	-0.8	0	V
107	Isc(UNx)lo	Short-Circuit Current in UNx	vs. GNDP, $\mathrm{V}(\mathrm{UNx})=2 . .40 \mathrm{~V}, \mathrm{~T}<\mathrm{Toff} 2$	22	28	35	mA
108	Isc(UNx)lo	Short-Circuit Current in UNx	vs. GNDP, $\mathrm{V}(\mathrm{UNx})=-40 \ldots-2 \mathrm{~V}, \mathrm{~T}<$ Toff2	-100	-40	-22	mA

Rev A1, Page 12/55

ELECTRICAL CHARACTERISTICS

Operating conditions: VB = 14.5... $16 \mathrm{~V}, \mathrm{VNB}=-15 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{VDA}=18 \ldots 36 \mathrm{~V}$ or $\mathrm{VDA}=\mathrm{VB}, \mathrm{VCC}=3.3 . .5 \mathrm{~V} \pm 5 \%, \mathrm{RREF}=20 \mathrm{k} \Omega \pm 0.1 \% \mathrm{TK} 5$, $\mathrm{Tj}=-20 \ldots 105^{\circ} \mathrm{C}$, if not otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
109	Isc(UNx)lo	Short-Circuit Current from UNx	vs. GNDP, V(UNx) = -40...-2 V, T > Toff2	-50		-1	mA
110	$\operatorname{lor}(\mathrm{IAx})$	Current-Output Range	Range 1, current output configuration, $\mathrm{V}(\mathrm{I} \mathrm{Ax})=0 . . .12 \mathrm{~V}$, after calibration	0		20.999	mA
111	$\operatorname{lor}(\mathrm{IAx})$	Current-Output Range	Range 2, current output configuration, $\mathrm{V}(\mathrm{IAx})=0 . . .12 \mathrm{~V}$, after calibration	4		20.999	mA
112	$\operatorname{lor}(\mathrm{IAx})$	Current-Output Range	Range 3, current output configuration, $\mathrm{V}(\mathrm{I} \mathrm{Ax})=0 . . .12 \mathrm{~V}$, after calibration	0		2.0999	mA
113	$\operatorname{lor}(\mathrm{IAx})$	Current-Output Range	Range 4, current output configuration, $\mathrm{V}(\mathrm{IAx})=0 . . .12 \mathrm{~V}$, after calibration	0		209.99	$\mu \mathrm{A}$
114	$\mathrm{lo}(\mathrm{IAx})$	Output Current	PT100 measurement, VDA $=24 \mathrm{~V} \pm 1 \mathrm{~V}$, $\mathrm{V}(\mathrm{IAx})=0.1 \ldots 0.64 \mathrm{~V}$, after calibration $\mathrm{Tj}=-40^{\circ} \mathrm{C}$ $\mathrm{Tj}=25^{\circ} \mathrm{C}$ $\mathrm{Tj}=100^{\circ} \mathrm{C}$ $\mathrm{Tj}=120^{\circ} \mathrm{C}$	$\begin{aligned} & 1.6975 \\ & 1.6995 \\ & 1.6975 \\ & 1.6925 \end{aligned}$	1.7	$\begin{aligned} & 1.7025 \\ & 1.7005 \\ & 1.7025 \\ & 1.7075 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
115	$\mathrm{lo}(\mathrm{IAx})$	Output Current	PT1000 measurement, VDA $=24 \mathrm{~V} \pm 1 \mathrm{~V}$, $\mathrm{V}(\mathrm{IAx})=0.1 \ldots 0.64 \mathrm{~V}$, after calibration $\mathrm{Tj}=-40^{\circ} \mathrm{C}$ $\mathrm{Tj}=25^{\circ} \mathrm{C}$ $\mathrm{Tj}=100^{\circ} \mathrm{C}$ $\mathrm{Tj}=120^{\circ} \mathrm{C}$	$\begin{aligned} & 169.75 \\ & 169.95 \\ & 169.75 \\ & 169.25 \end{aligned}$	170	$\begin{aligned} & 170.25 \\ & 170.05 \\ & 170.25 \\ & 170.75 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
116	$\operatorname{Ir}(\mathrm{IAx}, \mathrm{Ulx})$	Output Current-Ratio	PT 3-wire measurement, $\mathrm{V}(\mathrm{IAx})-\mathrm{V}(\mathrm{Ulx})=0 \ldots 1 \mathrm{~V}$	0.99	1	1.02	
117	Ilor(IAx)	Load Regulation	Output current range 1 to $3, \mathrm{~V}()=0 \ldots 10 \mathrm{~V}$ Output current range $4, \mathrm{~V}()=0 \ldots 10 \mathrm{~V}$ Output current range $4, \mathrm{~V}()=0.1 \ldots 0.64 \mathrm{~V}$	$\begin{gathered} -0.1 \\ -0.15 \\ -0.1 \end{gathered}$		$\begin{gathered} 0.1 \\ 0.15 \\ 0.1 \end{gathered}$	$\begin{aligned} & \text { \%FS } \\ & \text { \%FS } \\ & \text { \%FS } \end{aligned}$
118	Vto()hi	Upper Trigger Threshold hi at IAx, UIx	Current output configuration, Vto()hi $=\mathrm{VB}-\mathrm{V}(\mathrm{IAx})$, three-terminal mode: Vto()hi = VB - V(Ulx)	1.6	1.9	2.2	V
119	Vtu()hi	Lower Trigger Threshold hi at IAx, UIx	Current output configuration, Vtu() $\mathrm{hi}=\mathrm{VB}-\mathrm{V}(\mathrm{IAx})$, three-terminal mode: Vto()hi = VB - V(Ulx)	1.8	2.2	2.6	V
120	Vhys()hi	Hysteresis Trigger Threshold hi at IAx, UIx	Vhys, hi = Vto()hi - Vtu()hi	100	300	600	mV
121	C	Permissible Capacitor at IAx, UPx, Ulx, UNx	Voltage output configuration			1	$\mu \mathrm{F}$
122	L	Permissible Inductor at IAx, Ulx	Current output configuration			10	mH
VRP Reference Voltage							
J01	V(VRP)ab	Calibration Accuracy of Voltage Reference VRP	vs. VRN, VRPnom $=5.25 \mathrm{~V}$	-0.02		0.02	\%
J02	Ioff	Calibration Accuracy of Current Output (offset, 4 mA)	Bandgap calibrated, RREF $=20 \mathrm{k} \Omega \pm 0.1 \%$, Inom $=4 \mathrm{~mA}$	-0.05		0.05	\%
J03	Igain	Calibration Accuracy of Current Output (gain, 21 mA)	Bandgap calibrated, RREF $=20 \mathrm{k} \Omega \pm 0.1 \%$, Inom $=21 \mathrm{~mA}$	-0.05		0.05	\%
Analog Inputs UPx, UNx, Ulx, $\mathrm{x}=1,2$							
M01	Vm()U1	Permissible Voltage Range	Measurement range 1, after calibration	-10.5		10.499	V
M02	Vm() U 2	Permissible Voltage Range	Measurement range 2, after calibration	-1.05		1.0499	V
M03	Vm() U 3	Permissible Voltage Range	Measurement range 3, after calibration	-105		104.99	mV
M04	Vm() U 4	Permissible Voltage Range	Measurement range 4, after calibration	-10.5		10.499	mV
M05	Vm()U5	Permissible Voltage Range	Measurement range 5, after calibration	-17.5		87.5	mV
M06	Vm()U6	Permissible Voltage Range	Measurement range 6, after calibration	-4.375		21.875	mV
M07	Vm() I	Permissible Current Range	Measurement range 1, after calibration	-21		20.999	mA
M08	Vm() 12	Permissible Current Range	Measurement range 2, after calibration	-13		20.999	mA
M09	Ri() U	Input Resistor between UP1 and UI1 or UP2 and UI2	Voltage input configuration	10	15	20	$\mathrm{M} \Omega$

Rev A1, Page 13/55

ELECTRICAL CHARACTERISTICS

Operating conditions: VB $=14.5 \ldots 16 \mathrm{~V}, \mathrm{VNB}=-15 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{VDA}=18 \ldots 36 \mathrm{~V}$ or $\mathrm{VDA}=\mathrm{VB}, \mathrm{VCC}=3.3 \ldots 5 \mathrm{~V} \pm 5 \%, \mathrm{RREF}=20 \mathrm{k} \Omega \pm 0.1 \% \mathrm{TK} 5$, $\mathrm{Tj}=-20 \ldots 105^{\circ} \mathrm{C}$, if not otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
M10	Ri()	Input Resistance between UPx and UIX	Current input configuration	200	250	300	Ω
M11	Rm()I	Input Resistance between UP1 and UI1 or UP2 and UI2	Current input configuration, measurement range 1	115	144	175	Ω
M12	Rm()I	Input Resistance between UP1 and UI1 or UP2 and UI2	Current input configuration, measurement range 2	140	178	215	Ω
M13	$\operatorname{Imax}()$	Input Current limitation	Current input configuration; positive, in UPx negative, from UPx	$\begin{gathered} 25 \\ -80 \end{gathered}$	$\begin{gathered} 35 \\ -55 \end{gathered}$	$\begin{array}{r} 50 \\ -30 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
M14	Ipu(UPx)	Pull-Up Current from UPx	$\begin{aligned} & \mathrm{V}()=\mathrm{VNB} \ldots \mathrm{VNB}+3 \mathrm{~V} \\ & \mathrm{~V}()=\mathrm{VNB}+3 \mathrm{~V} \ldots \mathrm{VB}-1.5 \mathrm{~V} \\ & \mathrm{~V}()=\mathrm{VB}-1.5 \mathrm{~V} \ldots \mathrm{VB} \end{aligned}$	$\begin{gathered} -200 \\ -1 \\ -1 \end{gathered}$	-0.7	$\begin{gathered} -0.33 \\ -0.33 \\ 0 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
M15	Ipd(Ulx)	Pull-Down Current in Ulx	ENVIF_x $=$ lo, voltage measurement, $V()=-4 \ldots 4 V, V()=-4 V \ldots V B-3 V$	0.15	0.3	0.5	$\mu \mathrm{A}$
M16	dl()	Difference Pull-up/Pull-down current	ENVIF_x = lo, current measurement, I()$=\|\mathrm{lpu}(\mathrm{UPx})\|-\operatorname{lpd}(\mathrm{Ulx})$, $\mathrm{V}(\mathrm{UPx})=\mathrm{V}(\mathrm{Ulx})=\mathrm{VNB}+3 \mathrm{~V} . . \mathrm{VB}-3 \mathrm{~V}$	0.1	0.4	0.8	$\mu \mathrm{A}$
M17	$\operatorname{Irev}(\mathrm{UPx}), \mathrm{n}$	Current from UPx	V()$=\mathrm{VB}-46 \mathrm{~V}$...VNB, V(Ulx) $=0 \mathrm{~V}$	-10		0	mA
M18	$\operatorname{Irev}(\mathrm{UPx}), \mathrm{p}$	Current in UPx	V()$=\mathrm{VB} \ldots \mathrm{VNB}+46 \mathrm{~V}$	0		2	mA
M19	$\operatorname{Irev}($ Ulx), p	Current in Ulx	$\begin{aligned} & \text { ENVIF_x }=\mathrm{lo} ; \\ & V()=V B-3 V \ldots V B, V(U P x)=0 V \\ & V()=V B \ldots V N B+46 V, V(U P x)=0 V \end{aligned}$	$\begin{gathered} 0.15 \\ 1 \end{gathered}$		$\begin{gathered} 100 \\ 2000 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
M20	$\operatorname{Irev}(\mathrm{Ulx}), \mathrm{n}$	Current from Ulx	ENVIF_x $=10, \mathrm{~V}()=\mathrm{VB}-46 \mathrm{~V} . . .4 \mathrm{~V}$	-10000		+0.5	$\mu \mathrm{A}$
M21	Vto(UPx)	Upper Threshold at UPx	Voltage/current measurement configuration, $\mathrm{Vto}(\mathrm{UPx})=\mathrm{VB}-\mathrm{V}(\mathrm{UPx})$	0.8	1.3	1.8	V
M22	Vtu(UPx)	Lower Threshold at UPx	Voltage/current measurement configuration, $\mathrm{Vtu}(\mathrm{UPx})=\mathrm{VB}-\mathrm{V}(\mathrm{UPx})$	0.9	1.4	1.9	V
M23	Vhys(UPx)	Hysteresis Threshold at UPx	Vhys(UPx) = Vto(UPx) - Vtu(UPx)	40	150	400	mV
M24	Vto(Ulx)	Upper Threshold at Ulx	Voltage measurement configuration	-5	-4.3	-3.6	V
M25	Vtu(Ulx)	Lower Threshold at Ulx	Voltage measurement configuration	-5.1	-4.4	-3.7	V
M26	Vhys(Ulx)	Hysteresis Threshold at Ulx	Voltage measurement configuration	40	150	400	mV
M27	Vto(Ulx)	Upper Threshold at Ulx	Current measurement configuration, Vto(Ulx) = V(Ulx) - VNB	0.8	1.3	1.8	V
M28	Vtu(Ulx)	Lower Threshold at Ulx	Current measurement configuration, $\mathrm{Vtu}(\mathrm{Ulx})=\mathrm{V}(\mathrm{Ulx})-\mathrm{VNB}$	0.9	1.4	1.9	V
M29	Vhys(Ulx)	Hysteresis Threshold at Ulx	Current measurement configuration, Vhys(Ulx) = Vto(Ulx) - Vtu(Ulx)	40	150	400	mV
M30	Vgl() U	Common-Mode Range	Voltage measurement (range 1, 2)	-1		1	V
M31	Vgl()	Common-Mode Range	Voltage measurement (range 3)	-1		4	V
M32	Vgl()	Common-Mode Range	Voltage measurement (range 4...6)	-3		3	V
M33	Vgl() l	Common-Mode Range	Current measurement	-6		6	V
M34	R(Ulx)	Input Resistance at Ulx	$\begin{aligned} & \text { ENVIF_x= hi; } \\ & \text { V(Ulx)= VNB... } 0 \mathrm{~V} \\ & \mathrm{~V}(\mathrm{Ulx})=0 \ldots . .1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 20 \mathrm{k} \\ & 20 \mathrm{k} \end{aligned}$		$\begin{gathered} 50 \mathrm{k} \\ 100 \mathrm{k} \end{gathered}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
M35	Ipd(Ulx)	Pull-Down Current at Ulx	ENVIF_x $=$ hi, V(Ulx) $=1 \mathrm{~V}$... VB	15		200	$\mu \mathrm{A}$
SAR A/D-Converter							
N01	R()	Resolution SAR-Converter		14			Bit
N02	Offerr()	Offset-Error Voltage Measurement	Measurement referenced to pin RN	-0.5		0.5	\%FS
N03	Offerr()	Offset-Error Current-Measurement Digital Output Hi-Side or Lo-Side driver	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=-20 \ldots 100^{\circ} \mathrm{C} \\ & \mathrm{Tj}=-20 \ldots . .120^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -1 \\ & -2 \\ & -3 \end{aligned}$	0.2	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline \text { \%FS } \\ & \text { \%FS } \\ & \% F S \end{aligned}$
N04	Verr()	Gain-Error Voltage Measurement	Measurement Range 0...2.625 V, referenced to pin RN	-4		4	\%FS

Rev A1, Page 14/55

ELECTRICAL CHARACTERISTICS

Operating conditions: $\mathrm{VB}=14.5 \ldots 16 \mathrm{~V}, \mathrm{VNB}=-15 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{VDA}=18 \ldots 36 \mathrm{~V}$ or $\mathrm{VDA}=\mathrm{VB}, \mathrm{VCC}=3.3 \ldots 5 \mathrm{~V} \pm 5 \%, \mathrm{RREF}=20 \mathrm{k} \Omega \pm 0.1 \% \mathrm{TK} 5$, $\mathrm{Tj}=-20 \ldots 105^{\circ} \mathrm{C}$, if not otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit	
N05	Verr()	Gain-Error Current-Measurement Digital Output Hi-Side or Lo-Side driver	Measurement Range \|0... $200 \mathrm{~mA} \mid$, $\%$ FS $\xlongequal{〔} 200 \mathrm{~mA}$	-10		10	\%FS	
N06	Verr()	Gain-Error Current-Measurement Digital Output Hi-Side or Lo-Side driver	Measurement Range \|200... 500 mA	, $\%$ FS $\xlongequal{=} 500 \mathrm{~mA}$	-10		10	\%FS
N07	Tct	Conversion Rate	One channel Two channels Three channels Four channels Five channels All analog channels count (inputs, outputs, PT-elements count double) as well as diagnostics measurement	$\begin{gathered} 30 \\ 15 \\ 10 \\ 7.5 \\ 6 \end{gathered}$			kHz kHz kHz kHz kHz	
D/A-Converter								
001	R()	Resolution		14			Bit	
O02	Offerr()U	Offset-Error Voltage Output	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \text { input: } 0 \times 0000 \\ & \mathrm{Tj}=-20 \ldots 100^{\circ} \mathrm{C} \text {, input: } 0 \times 0000 \\ & \mathrm{Tj}=-20 \ldots 120^{\circ} \mathrm{C} \text {, input: } 0 \times 0000 \end{aligned}$	$\begin{gathered} -0.015 \\ -0.03 \\ -0.06 \end{gathered}$		$\begin{gathered} 0.015 \\ 0.03 \\ 0.06 \end{gathered}$	$\begin{aligned} & \text { \%FS } \\ & \text { \%FS } \\ & \text { \%FS } \\ & \hline \end{aligned}$	
O03	Tc()off	Temperature-Coefficient Off-set-Error	$\mathrm{Tj}=100 . . .120^{\circ} \mathrm{C}$, referenced to $100^{\circ} \mathrm{C}$, input: 0x0000	-0.0015		0.0015	\%FS/ ${ }^{\circ} \mathrm{C}$	
O04	Gainerr()U	Gain-Error Voltage Output	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \text {, input: } 0 x E 000,0 \times 1 \mathrm{FFF} \\ & \mathrm{Tj}=-20 \ldots 100^{\circ} \mathrm{C}, \text { input: } 0 \times \mathrm{E} 000,0 \times 1 \mathrm{FFF} \\ & \mathrm{Tj}=-20 \ldots 120^{\circ} \mathrm{C}, \text { input: } 0 x E 000,0 \times 1 \mathrm{FFF} \end{aligned}$	$\begin{gathered} -0.025 \\ -0.07 \\ -0.14 \end{gathered}$		$\begin{aligned} & 0.025 \\ & 0.07 \\ & 0.14 \end{aligned}$	$\begin{aligned} & \text { \%FS } \\ & \text { \%FS } \\ & \text { \%FS } \end{aligned}$	
O05	Tc()gain	Temperature-Coefficient Gain-Er ror	$\mathrm{Tj}=100 . .120^{\circ} \mathrm{C}$, referenced to $100^{\circ} \mathrm{C}$, input: 0xE000, 0x1FFF	-0.0035		0.0035	\%FS/ ${ }^{\circ} \mathrm{C}$	
O06	Offerr()I	Offset-Error Current Output	Range $1 \ldots 3, \mathrm{Tj}=25^{\circ} \mathrm{C}$, input: 0×0000 Range 1...3, $\mathrm{Tj}=-20 \ldots . .100^{\circ} \mathrm{C}$, input: 0×0000 Range 1...3, $\mathrm{Tj}=-20 \ldots . .120^{\circ} \mathrm{C}$, input: 0×0000 Range 4, $\mathrm{Tj}=25^{\circ} \mathrm{C}$, input: 0×0000 Range 4, $\mathrm{Tj}=-20 \ldots 100^{\circ} \mathrm{C}$, input: 0×0000 Range $4 \mathrm{Tj}=-20 \ldots 120^{\circ} \mathrm{C}$, input: 0×0000	$\begin{gathered} -0.06 \\ -0.12 \\ -0.24 \\ 0 \\ 0 \\ 0 \end{gathered}$		$\begin{gathered} 0.06 \\ 0.12 \\ 0.24 \\ 0.6 \\ 0.6 \\ 1.0 \end{gathered}$	\%FS \%FS \%FS \%FS \%FS \%FS	
007	Tc()off	Temperature-Coefficient Offset-Error Current Output	Range 1...3, $\mathrm{Tj}=100 \ldots 120^{\circ} \mathrm{C}$, referenced to $100^{\circ} \mathrm{C}$, input: 0×0000 Range $4, \mathrm{Tj}=100 \ldots 120^{\circ} \mathrm{C}$, referenced to $100^{\circ} \mathrm{C}$, Eingang: 0×0000	$\begin{gathered} -0.006 \\ 0 \end{gathered}$		$\begin{gathered} 0.006 \\ 0.02 \end{gathered}$	$\begin{array}{\|l\|} \% \mathrm{FS} /{ }^{\circ} \mathrm{C} \\ \% \mathrm{FS} /{ }^{\circ} \mathrm{C} \end{array}$	
008	Gainerr()I	Gain-Error Current Output	Range $1 \ldots 3, \mathrm{Tj}=25^{\circ} \mathrm{C}$, input: 0×3 FFF Range $1 \ldots 3, \mathrm{Tj}=-20 \ldots 100^{\circ} \mathrm{C}$, input: 0×3 FFF Range $1 \ldots 3, \mathrm{Tj}=-20 \ldots 120^{\circ} \mathrm{C}$, input: 0×3 FFF Range $4, \mathrm{Tj}=25^{\circ} \mathrm{C}$, input: $0 \times 3 \mathrm{FFF}$ Range 4, $\mathrm{Tj}=-20 \ldots 100^{\circ} \mathrm{C}$, input: 0×3 FFF Range $4, \mathrm{Tj}=-20 \ldots 120^{\circ} \mathrm{C}$, input: 0×3 FFF	$\begin{gathered} -0.14 \\ -0.28 \\ -0.56 \\ -0.6 \\ -0.6 \\ -1.0 \end{gathered}$		$\begin{gathered} 0.14 \\ 0.28 \\ 0.56 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \text { \%FS } \\ & \% F S \end{aligned}$	
009	Tc()gain	Temperature-Coefficient Gain-Error Current Output	Range $1 . . .3, \mathrm{Tj}=100 . . .120^{\circ} \mathrm{C}$, referenced to $100^{\circ} \mathrm{C}$, input: 0x3FFF Range $4, \mathrm{Tj}=100 \ldots 120^{\circ} \mathrm{C}$, referenced $100^{\circ} \mathrm{C}$, input: $0 \times 3 F F F$	$\begin{gathered} -0.014 \\ -0.02 \end{gathered}$		0.014 0	$\begin{aligned} & \% \mathrm{FS} /{ }^{\circ} \mathrm{C} \\ & \% \mathrm{FS} /{ }^{\circ} \mathrm{C} \end{aligned}$	
010	DNL	Differential Nonlinearity		-0.25		0.25	LSB	
011	Tcr	Conversion Rate	One channel Two channels Three channels Four channels Five channels All analog channels count (inputs, outputs, PT-elements count double) as well as diagnostics measurement	$\begin{gathered} 30 \\ 15 \\ 10 \\ 7.5 \\ 6 \end{gathered}$			kHz kHz kHz kHz kHz	
012	Tov()U	Overshoot		-2		2	\%FS	
013	Tov()I			-1		1	\%FS	
014	Tsu	Settling Time	to > 99\% full-scale			20	$\mu \mathrm{s}$	

Rev A1, Page 15/55

ELECTRICAL CHARACTERISTICS

Operating conditions: $\mathrm{VB}=14.5 \ldots 16 \mathrm{~V}, \mathrm{VNB}=-15 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{VDA}=18 \ldots 36 \mathrm{~V}$ or $\mathrm{VDA}=\mathrm{VB}, \mathrm{VCC}=3.3 \ldots 5 \mathrm{~V} \pm 5 \%, \mathrm{RREF}=20 \mathrm{k} \Omega \pm 0.1 \% \mathrm{TK} 5$, $\mathrm{Tj}=-20 \ldots 105^{\circ} \mathrm{C}$, if not otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\Delta \Sigma \mathrm{A} / \mathrm{D}-$ Wandler							
S01	R()	Resolution		14			Bit
S02	Err()U	Voltage-Measurement Error	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=-20 \ldots 100^{\circ} \mathrm{C} \\ & \mathrm{Tj}=-20 \ldots . .120^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} -0.05 \\ -0.15 \\ -0.2 \end{gathered}$		$\begin{gathered} 0.05 \\ 0.15 \\ 0.2 \\ \hline \end{gathered}$	$\begin{aligned} & \text { \%FS } \\ & \text { \%FS } \\ & \text { \%FS } \end{aligned}$
S03	Tc()off	Voltage-Measurement Tempera-ture-Coefficient Error	$\mathrm{Tj}=100 . . .120^{\circ} \mathrm{C}$, referenced to $100^{\circ} \mathrm{C}$	-0.0025		0.0025	\%FS/ ${ }^{\circ} \mathrm{C}$
S04	CMerr()U	Voltage-Mesurement Common-Mode Error	Range 1 Range 2 Range 3 Range 4 Range 5 Range 6	$\begin{aligned} & -0.04 \\ & -0.08 \\ & -0.20 \\ & -0.25 \\ & -0.20 \\ & -0.20 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.08 \\ & 0.20 \\ & 0.25 \\ & 0.20 \\ & 0.20 \end{aligned}$	\%FS/V \%FSN \%FS/V \%FS/V \%FS/V \%FS/V
S05	Err()I1	Current-Measurement Error	Range 1, $\mathrm{Tj}=25^{\circ} \mathrm{C}$ Range 1, $\mathrm{Tj}=-20 \ldots 100^{\circ} \mathrm{C}$ Range 1, $\mathrm{Tj}=-20 \ldots . .120^{\circ} \mathrm{C}$ Range 2, $\mathrm{Tj}=25^{\circ} \mathrm{C}$ Range 2, $\mathrm{Tj}=-20 \ldots 100^{\circ} \mathrm{C}$ Range 2, $\mathrm{Tj}=-20 \ldots . .120^{\circ} \mathrm{C}$	$\begin{aligned} & -0.1 \\ & -0.2 \\ & -0.3 \\ & -0.2 \\ & -0.4 \\ & -0.6 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.2 \\ & 0.4 \\ & 0.6 \end{aligned}$	\%FS \%FS \%FS \%FS \%FS \%FS
S06	Tc()off	Current-Measurement Temperature-Coefficient Error	$\begin{aligned} & \text { Range } 1, \mathrm{Tj}=100 \ldots 120^{\circ} \mathrm{C}, \\ & \text { referenced to } 100^{\circ} \mathrm{C} \\ & \text { Range 2, } \mathrm{Tj}=100 \ldots . .120^{\circ} \mathrm{C}, \\ & \text { referenced to } 100^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} -0.005 \\ -0.01 \end{gathered}$		$\begin{gathered} 0.005 \\ 0.01 \end{gathered}$	$\% \mathrm{FS} /{ }^{\circ} \mathrm{C}$ $\% \mathrm{FS} /{ }^{\circ} \mathrm{C}$
S07	CMerr()I	Current-Measurement Common-Mode Error	Range 1 Range 2	$\begin{aligned} & -0.08 \\ & -0.16 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.08 \\ & 0.16 \\ & \hline \end{aligned}$	\%FS/V \%FS/V
S08	Err()T	Temperature-Mesurement Error	Type J, K, N, E, PTxxx, Tj $=25^{\circ} \mathrm{C}$ Type J, K, N, E, PTxxx, Tj=-20... $100^{\circ} \mathrm{C}$ Type J, K, N, E, PTxxx, Tj $=-20 \ldots 120^{\circ} \mathrm{C}$ Type R, S, B, Tj $=25^{\circ} \mathrm{C}$ Type R, S, B, $\mathrm{Tj}=-20 \ldots 100^{\circ} \mathrm{C}$ Type R, S, B, Tj=-20... $120^{\circ} \mathrm{C}$ Type $\mathrm{T}, \mathrm{Tj}=25^{\circ} \mathrm{C}$ Type T, $\mathrm{Tj}=-20 . . .100^{\circ} \mathrm{C}$ Type T, $\mathrm{Tj}=-20 . . .120^{\circ} \mathrm{C}$	$\begin{gathered} -0.15 \\ -0.3 \\ -0.5 \\ -0.2 \\ -0.4 \\ -0.7 \\ -0.3 \\ -0.6 \\ -1.2 \end{gathered}$		$\begin{aligned} & \hline 0.15 \\ & 0.3 \\ & 0.5 \\ & 0.2 \\ & 0.4 \\ & 0.7 \\ & 0.3 \\ & 0.6 \\ & 1.2 \end{aligned}$	\%FS \%FS
S09	Tc()	Temperature-Coefficient Temperature-Mesurement Error	$\begin{aligned} & \text { Type J, K, N, E, PTxxx Tj }=100 \ldots 120^{\circ} \mathrm{C}, \\ & \text { referenced to } 100^{\circ} \mathrm{C} \\ & \text { Type } \mathrm{R}, \mathrm{~S}, \mathrm{~B}, \mathrm{Tj}=100 \ldots . .120^{\circ} \mathrm{C}, \\ & \text { referenced to } 100^{\circ} \mathrm{C} \\ & \text { Type } \mathrm{T}, \mathrm{Tj}=100 \ldots 120^{\circ} \mathrm{C}, \\ & \text { referenced to } 100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -0.01 \\ & -0.015 \\ & -0.03 \end{aligned}$		$\begin{gathered} 0.01 \\ 0.015 \\ 0.03 \end{gathered}$	$\% \mathrm{FS} /{ }^{\circ} \mathrm{C}$ $\% \mathrm{FS} /{ }^{\circ} \mathrm{C}$ $\% \mathrm{FS} /{ }^{\circ} \mathrm{C}$
S10	CMerr()T	Thermo-Couples Common-Mode Error	Range J Range K Range T Range N Range E Range R Range S Range B	$\begin{aligned} & -0.36 \\ & -0.43 \\ & -1.38 \\ & -0.64 \\ & -0.39 \\ & -0.65 \\ & -0.62 \\ & -0.68 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0.36 0.43 1.38 0.64 0.39 0.65 0.62 0.68	\%FS/V \%FS/V
S11	FIL	Filter Settings	Maximum cut-off frequency for achieving the stated accuracy (variance of measured values significantly smaller than permissible measurement error at $\mathrm{Tj}=25^{\circ} \mathrm{C}$) $\pm 10 \mathrm{~V}, \pm 1 \mathrm{~V}, \pm 100 \mathrm{mV}, \pm 20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$, PTxxx -17.5... 87.5 mV , TE JKTNE $\pm 10 \mathrm{mV}$ -4.375...21.875 mV, TE RSB			$\begin{gathered} \text { arbitrary } \\ 1000 \\ 250 \\ 125 \end{gathered}$	$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \\ & \mathrm{~Hz} \\ & \mathrm{~Hz} \end{aligned}$
S12	DNL	Differential Nonlinearity		-1		1	LSB
S13	INL	Integrale Nonlinearity		-1		1	LSB
S14	Tov	Overshoot		-1		1	\%FS
S15	V(VRPH)	Voltage at VRPH		2.5	2.625	2.75	V

iC-GD

UNIVERSAL I/O INTERFACE

(1) Hous

Rev A1, Page 16/55

ELECTRICAL CHARACTERISTICS

Operating conditions: VB = 14.5... $16 \mathrm{~V}, \mathrm{VNB}=-15 \mathrm{~V} \pm 1 \mathrm{~V}, \mathrm{VDA}=18 \ldots 36 \mathrm{~V}$ or $\mathrm{VDA}=\mathrm{VB}, \mathrm{VCC}=3.3 . .5 \mathrm{~V} \pm 5 \%, \mathrm{RREF}=20 \mathrm{k} \Omega \pm 0.1 \% \mathrm{TK} 5$, $\mathrm{Tj}=-20 \ldots 105^{\circ} \mathrm{C}$, if not otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
S16	Isc()hi	Short-Circuit Current hi from VRPH	$\mathrm{V}(\mathrm{VRPH})=0 \mathrm{~V}$	-20	-6.5	-2	mA
S17	Isc()lo	Short-Circuit Current lo from VRPH	$\mathrm{V}(\mathrm{VRPH})=5 \mathrm{~V}$	5	17.5	40	mA
S18	V(VREF)	Voltage at VREF	VREF $=$ VRPH - 1.33 * VBG	0.8	1	1.2	V
S19	Isc()hi	Short-Circuit Current hi from VREF	$\mathrm{V}(\mathrm{VREF})=0 \mathrm{~V}$	-30	-7.5	-3	mA
S20	Isc()lo	Short-Circuit Current lo from VREF	$\mathrm{V}(\mathrm{VREF})=5 \mathrm{~V}$	3	12.5	30	mA
Startup Behaviour							
T01	tir	Maximum Start-up-Time normal mode	NCS at '1' during self-configuration phase (from 30μ s to poweron/reset, until RDY at '1')		40	80	ms
T02	tif	Maximum Start-up-Time fast mode: EEPROM data will be not read	NCS at '0', SCLK at '1' during self-configuration phase (from 30μ s to poweron/reset, until RDY at '1')		0.5		ms
T03	tix	Maximum Start-up-Time ultra fast mode: EEPROM and zapping data will be not read	NCS at ' 0 ', SCLK at ' 0 ' during self-configuration phase (from 30μ s to poweron/reset, until RDY at '1')		0.08		ms

EXTERNAL CIRCUITRY

Figure 1: Typical external circuitry

Figure 2: Overview of external connectivity

UNIVERSAL I/O INTERFACE

FUNCTION DESCRIPTION

Power supply

The iC is supplied via the following pins:

Power Supply			
Pin Name	Function	Range	typ. Value
VB	positive analog supply	$14.5 \ldots 16 \mathrm{~V}$	+15 V
VNB	negative analog supply	$-16 . .-14 \mathrm{~V}$	-15 V
VCC	positive digital supply	$3.135 \ldots 5 . .25 \mathrm{~V}$	3.3 or 5 V
VDA	positive power supply	$18 . . .36 \mathrm{~V}$	24 V
GNDP	power ground	0 V	0 V
GNDL	logic ground	0 V	0 V
GNDA	analog ground	0 V	0 V

Table 4: Power Supply

The pins GNDP, GNDL and GNDA are to be connected externally via a neutral point.

Default state of IO pins

- IAx: Configured as digital type 3 inputs according to DIN/EN 61131-2
- UPx: Configured as voltage outputs with 0 V vs. UNx
- Ulx: Pulldown current vs. VNB
- UNx: Pulldown current vs. GND

Digital inputs IAx

For the digital inputs several pull-down currents according to DIN/EN61131-2 and a pull-up current can be set. The status of the digital inputs can be indicated via LEDs to ground at the pins LEDx even if the iC is not supplied with voltage. In order to reduce power dissipation, the pull-down current flows through the LEDs to ground. If no LED is used, the corresponding LEDx pin must be connected to ground.

Digital outputs IAx

The digital outputs can be configured as low-side, highside or push-pull drivers. If they are not configured as digital outputs they remain high-impedance.

The outputs are current-limited and switch off when the upper over-temperature limit T2 is reached. When the lower over-temperature limit T1 is exceeded, only the channel with excessive ouput current is disconnected.

A freewheeling circuit for inductive loads limits the positive voltage versus GNDP and the negative voltage versus VDA.

Diagnostics allow measuring and monitoring the output current in the output transistors directly. With appropriately configured pull-up or pulldown currents and voltage comparators, the status (output on or off, line break or short circuit to GNDP or VDA) can be detected.

Analog inputs (UPx, Ulx)

Table 5 shows the possible measuring ranges. The maximum ratings marked by (*) only apply, if the channel is configured as plain voltage input (IO_SEL_x=VI). Then the entire range is valid. If the channel is configured as temperature sensor (IO_SEL_x = TM), the maximum ratings in table 10 apply. The inputs include cable-break detection. The current inputs are current limited to protect the measuring resistor. In addition, it is possible to implement floating voltage or current measurements (e.g. floating thermocouples).

The individual measuring range must be calibrated to reach the specified accuracy. The accuracy according to the characteristics S 02 to S 05 is summarized in table 6.

Rev A1, Page 20/55

Measuring ranges				
Range	Maximum ratings	Digital values	Valid Range	
$\pm 10 \mathrm{~V}$	$\begin{gathered} \hline-10.5000 \mathrm{~V} \\ 10.4997 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 0 \times 8000 \\ & 0 \times 7 F F F \end{aligned}$	0x8619	0x79E7
$\pm 1 \mathrm{~V}$	$\begin{gathered} -1.05000 \mathrm{~V} \\ 1.04997 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{aligned} & 0 \times 8000 \\ & 0 \times 7 F F F \end{aligned}$	0x8619	0x79E7
$\pm 100 \mathrm{mV}$	$\begin{gathered} -105.000 \mathrm{mV} \\ 104.997 \mathrm{mV} \end{gathered}$	$\begin{aligned} & 0 \times 8000 \\ & 0 \times 7 F F F \end{aligned}$	0x8619	0x79E7
$\pm 10 \mathrm{mV}$	$\begin{gathered} -10.5000 \mathrm{mV} \\ 10.4997 \mathrm{mV} \end{gathered}$	$\begin{aligned} & 0 \times 8000 \\ & 0 \times 7 F F F \end{aligned}$	0x8619	0x79E7
$-17.5 \mathrm{mV} . . .87 .5 \mathrm{mV}$ (thermo couples JKTNE)	$\begin{gathered} -17.5 \mathrm{mV} \\ 87.498 \mathrm{mV} \end{gathered}$	$\begin{aligned} & 0 \times 8000 \\ & 0 \times 7 F F F \end{aligned}$	0x8000	0x7FFF (*)
$\begin{gathered} -4.375 \mathrm{mV} \ldots 21.875 \mathrm{mV} \\ \text { (thermo couples RSB) } \\ \hline \end{gathered}$	$\begin{gathered} -4.375 \mathrm{mV} \\ 21.8747 \mathrm{mV} \end{gathered}$	$\begin{aligned} & 0 \times 8000 \\ & 0 \times 7 F F F \end{aligned}$	0x8000	0x7FFF (*)
$\pm 20 \mathrm{~mA}$	$\begin{gathered} -21 \mathrm{~mA} \\ 20.999 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 0 \times 8000 \\ & 0 \times 7 F F F \end{aligned}$	0x8619	0x79E7
4... 20 mA	$\begin{gathered} \hline-13 \mathrm{~mA} \\ 4 \mathrm{~mA} \\ 20.999 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \hline 0 \times 8000 \\ & 0 \times 0000 \\ & 0 \times 7 F F F \end{aligned}$	0x0000	0x7878

Table 5: Measurement ranges of the analog inputs

Accuracy of measuring ranges			
$\mathbf{T j}$	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{- 4 0 . . . 1 0 0}{ }^{\circ} \mathrm{C}$	$\mathbf{- 4 0 . . . 1 2 0}{ }^{\circ} \mathbf{C}$
$\pm 10 \mathrm{~V}$	5.25 mV	21 mV	42 mV
$\pm 1 \mathrm{~V}$	0.525 mV	2.1 mV	4.2 mV
$\pm 100 \mathrm{mV}$	$52.5 \mu \mathrm{~V}$	$210 \mu \mathrm{~V}$	$420 \mu \mathrm{~V}$
$\pm 10 \mathrm{mV}$	$5.25 \mu \mathrm{~V}$	$21 \mu \mathrm{~V}$	$42 \mu \mathrm{~V}$
$-17.5 \mathrm{mV} . .87 .5 \mathrm{mV}$	$26.25 \mu \mathrm{~V}$	$105 \mu \mathrm{~V}$	$210 \mu \mathrm{~V}$
$-4.375 \mathrm{mV} \ldots 21.875 \mathrm{mV}$	$6.56 \mu \mathrm{~V}$	$26.25 \mu \mathrm{~V}$	$52.5 \mu \mathrm{~V}$

Table 6: Accuracy of the measurement ranges depending on chip temperature

Analog outputs (UPx, UNx, IAx)

The positive voltage outputs UPx are current-limited and switch off, when overtemperature limit T2 is exceeded. If the temperature exceeds overtemperature limit T1, the output is only disconnected, if it reports an overload at the same time.

An extended current mode provides increased current capability of up to +20 mA .

All negative voltage outputs UNx contain a 25 mA current source that only switches off in case of overload and when exceeding the upper overtemperature limit T2.

When the short-circuit output current is reached, a seperate error bit is set for each of the states low and high. An overload is reported when the output voltage deviates from the set point by more than 1 V , since a
short circuit can occur anywhere in the entire output voltage range.

In combination with an external resistor and the voltage measurement (Mixed Mode), the current outputs IAx can be extended for a resistance measurement. The measuring ranges and tolerances are the same as for the individual functions. The minimum supply voltage $\mathrm{VB}=14.5 \mathrm{~V}$ and the saturation voltage hi at the output IAx result in a maximum load of 600Ω for 20 mA current output.

By reaching the upper dynamic range, a highimpedance load or open wire at IAx or Ulx during a 3-wire measurement can be detected. This is indicated by the relevant error bits. For this functionality, at least one output current of -10 mA must be set. If an NTC or PTC resistance is used for temperature measurement, the linearization and calibration must be carried out externally.

Both voltage and current outputs must be calibrated to reach the specified accuracy. The accuracy according to the characteristics O 02 to O 05 is summarized in table 8.

Output ranges		
Range	Maximum ratings	Digital values
$\pm 10 \mathrm{~V}$	$\begin{gathered} \hline-10.500 \mathrm{~V} \\ 10.499 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0 \times 8000 \\ & 0 \times 7 F F C \end{aligned}$
0... 20 mA	$\begin{gathered} 0 \mathrm{~mA} \\ 20.999 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 0 \times 0000 \\ & \text { 0xFFFFC } \end{aligned}$
4. . 20 mA	$\begin{gathered} 4 \mathrm{~mA} \\ 20.999 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 0 \times 0000 \\ & 0 x F F F F C \end{aligned}$
0... 2 mA	$\begin{gathered} 0 \mathrm{~mA} \\ 2.0999 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 0 \times 0000 \\ & 0 x F F F C \end{aligned}$
0... $200 \mu \mathrm{~A}$	$\begin{gathered} 0 \mathrm{~mA} \\ 209.99 \mu \mathrm{~A} \end{gathered}$	$\begin{aligned} & 0 \times 0000 \\ & 0 x F F F F C \end{aligned}$

Table 7: Output ranges of the analog outputs

Accuracy of output ranges			
$\mathbf{T j}$	$\mathbf{2 5}^{\circ} \mathbf{C}$	$\mathbf{- 4 0} . . \mathbf{1 0 0}^{\circ} \mathbf{C}$	$\mathbf{- 4 0 \ldots 1 2 0}{ }^{\circ} \mathbf{C}$
$\pm 10 \mathrm{~V}$	5.25 mV	21 mV	42 mV
$0 \ldots 20 \mathrm{~mA}$	$42 \mu \mathrm{~A}$	$84 \mu \mathrm{~A}$	$168 \mu \mathrm{~A}$
$4 \ldots 20 \mathrm{~mA}$	$34 \mu \mathrm{~A}$	$68 \mu \mathrm{~A}$	$136 \mu \mathrm{~A}$
$0 \ldots 2 \mathrm{~mA}$	$4.2 \mu \mathrm{~A}$	$8.4 \mu \mathrm{~A}$	$16.8 \mu \mathrm{~A}$
$0 \ldots 200 \mu \mathrm{~A}$	$0.42 \mu \mathrm{~A}$	$0.84 \mu \mathrm{~A}$	$1.68 \mu \mathrm{~A}$

Table 8: Accuracy of the output ranges depending on chip temperature

Thermocouples and PT temperature sensors

Table 10 shows the supported thermocouples and PT temperature sensors. The temperature is determined with a resolution of 0.1 K .

To calculate the temperature of the thermocouples at the measuring point, the cold junction temperature is also required. The cold junction temperature needs to be stored as a digital value in the range of $-20 \ldots 105^{\circ} \mathrm{C}$ for both channels and in the same format as the temperature itself via the SPI in the register TEMP_KSK.

The cold junction temperature is limited internally to its valid range. The linearization of the measuring temperature continues, even when leaving the valid temperature range (see table 10). This prevents an overflow of the number range. Additionally, the negative range is limited to $-209.15^{\circ} \mathrm{C}$. The upper and lower values of temperature range apply as threshold values for the range excess. This is compared to the final calculated temperature, i.e. for the thermocouples after cold junction compensation. Table 65 shows by way of example further settings for additional PT features for which lin-
earization can also be used. The accuracy according to the Electrical Characteristics Item No. S06 is summarized in table 11.

Temperature range		
Range	Maximum ratings	Digital value
Thermo couple,	0 K	0×0000
PT sensor	$6,553.5 \mathrm{~K}$	$0 \times F F F F$

Table 9: Temperature range

Thermo couples		
Typ	Temperature range	Valid range
J	$-100 \ldots 1200^{\circ} \mathrm{C}$	$0 \times 06 \mathrm{C} 4 \ldots 0 \times 398 \mathrm{~B}$
K	$-100 \ldots 1370^{\circ} \mathrm{C}$	$0 \times 06 \mathrm{C} 4 \ldots 0 \times 402 \mathrm{~F}$
T	$-100 \ldots 400^{\circ} \mathrm{C}$	$0 \times 06 \mathrm{C} 4 \ldots 0 \times 1 \mathrm{~A} 4 \mathrm{~B}$
N	$-100 \ldots 1300^{\circ} \mathrm{C}$	$0 \times 06 \mathrm{C} 4 \ldots 0 \times 3 \mathrm{D} 73$
E	$-100 \ldots 1000^{\circ} \mathrm{C}$	$0 \times 06 \mathrm{C} 4 \ldots 0 \times 31 \mathrm{BB}$
R	$-50 \ldots 1768^{\circ} \mathrm{C}$	$0 \times 08 \mathrm{~B} 8 \ldots 0 \times 4 \mathrm{FBB}$
S	$-50 \ldots 1768^{\circ} \mathrm{C}$	$0 \times 08 \mathrm{~B} 8 \ldots 0 \times 4 \mathrm{FBB}$
B	$600 \ldots 1820^{\circ} \mathrm{C}$	$0 \times 221 \mathrm{C} \ldots 0 \times 51 \mathrm{C} 3$
PT sensors		
Typ	Temperature range	Valid range
PT-100	$-100 \ldots 800^{\circ} \mathrm{C}$	$0 \times 06 \mathrm{C} 4 \ldots 0 \times 29 \mathrm{~EB}$
PT-1000	$-100 \ldots 800^{\circ} \mathrm{C}$	$0 \times 06 \mathrm{C} 4 \ldots 0 \times 29 \mathrm{~EB}$

Table 10: Temperature measurement

Accuracy of the temperature ranges			
Tj	$\mathbf{2 5}{ }^{\circ} \mathrm{C}$	$\mathbf{- 4 0} . . .100^{\circ} \mathrm{C}$	$-\mathbf{- 4 0 . . . 1 2 0}{ }^{\circ} \mathrm{C}$
TE Type J	$1.95^{\circ} \mathrm{C}$	$3.9^{\circ} \mathrm{C}$	$7.8^{\circ} \mathrm{C}$
TE Type K	$2.21^{\circ} \mathrm{C}$	$4.41^{\circ} \mathrm{C}$	$8.82^{\circ} \mathrm{C}$
TE Type T	$0.75^{\circ} \mathrm{C}$	$1.5^{\circ} \mathrm{C}$	$3.0^{\circ} \mathrm{C}$
TE Type N	$2.1^{\circ} \mathrm{C}$	$4.2^{\circ} \mathrm{C}$	$8.4^{\circ} \mathrm{C}$
TE Type E	$1.65^{\circ} \mathrm{C}$	$3.3^{\circ} \mathrm{C}$	$6.6^{\circ} \mathrm{C}$
TE Type R	$2.73^{\circ} \mathrm{C}$	$5.45^{\circ} \mathrm{C}$	$10.9^{\circ} \mathrm{C}$
TE Type S	$2.73^{\circ} \mathrm{C}$	$5.45^{\circ} \mathrm{C}$	$10.9^{\circ} \mathrm{C}$
TE Type B	$1.83^{\circ} \mathrm{C}$	$3.66^{\circ} \mathrm{C}$	$7.32^{\circ} \mathrm{C}$
PT100, PT1000	$1.35^{\circ} \mathrm{C}$	$2.7^{\circ} \mathrm{C}$	$5.4^{\circ} \mathrm{C}$

Table 11: Accuracy of the temperature ranges depending on chip temperature

Diagnostic measurements

For diagnostic purposes, several voltages and the currents in the outputs IAx as well as internal reference voltages can be measured by a 14 bit ADC. The converter maps the voltage range of 0 to $5.25 \mu \mathrm{~A}$ or 0 to $60 \mu \mathrm{~A}$ respectively with a 14-bit resolution to the digital values DAC[13:0] of 0×0000 to $0 \times 3 F F F$. Due to internal limitations, the actual usable measuring range is lower as shown in table 12.

UNIVERSAL I/O INTERFACE

Rev A1, Page 22/55

Diagnostic measurements	Conversion	Measurement range
Name	$\frac{5.25 \mathrm{~V}}{2^{14}} \cdot$ DIAG $\cdot 6$	$0 \ldots 18 \mathrm{~V}$
+15 V supply voltage VB	$\frac{5.25 \mathrm{~V}}{2^{14}} \cdot$ DIAG $\cdot 6-26.25 \mathrm{~V}$	$-18 \ldots-8.25 \mathrm{~V}$
-15 V supply voltage VNB	$\frac{5.25 \mathrm{~V}}{2^{14}} \cdot$ DIAG $\cdot 2$	$0 \ldots 6 \mathrm{~V}$
$3.3 \ldots 5 \mathrm{~V}$ supply voltage VCC	$\frac{5.25 \mathrm{~V}}{2^{14}} \cdot$ DIAG $\cdot 12$	$0 \ldots 36 \mathrm{~V}$
24 V supply voltage VDA	$\frac{5.25 \mathrm{~V}}{2^{14}} \cdot$ DIAG $\cdot 2$	$0 \ldots 6 \mathrm{~V}$
5.25 V supply voltage analog VPA	$\frac{5.25 \mathrm{~V}}{2^{14}} \cdot$ DIAG $\cdot 2$	$0 \ldots 6 \mathrm{~V}$
5.25 V supply voltage digital VPD	$-\frac{60 \mu \mathrm{~A}}{2^{14}} \cdot$ DIAG $\cdot 10000$	$-600 \ldots 0 \mathrm{~mA}$
Current from digital hi-side output IAx	$-\frac{60}{2^{\mu 4}} \cdot$ DIAG $\cdot 10000$	$0 \ldots 600 \mathrm{~mA}$
Current into digital lo-side output IAx	$\frac{6}{}$	

Table 12: Diagnostic measurements

EEPROM

Batch number and one-time programming

During production, a 24-bit serial number is stored on the chip. It is composed of the batch, wafer and chip number and can be read via SPI. In addition, the temperature coefficient of the bandgap (ATK), the temperature coefficient of the chip's internal resistor for current measurement (AITKQ, AITKL) and the offset of the chip
temperature measurement (AOCT) are calculated and stored (OTP).

EEPROM

The following table describes the structure of the data in the EEPROM starting at the top left with address $0 x 00$. Every cell represents one byte.

Rev A1, Page 23/55

Table 13: Register assignment EEPROM

Configuration

The first EEPROM memory area contains the configuration. The configuration is written exclusively via SPI using register WR_EEPROM_CONF. In addition to the configuration data marked with (RES), the correct CRC value CRCX is also calculated and written.

Calibration

The calibration data for the absolute accuracy and the matching CRCs is written via SPI using opcode $I^{2} \mathrm{C}$ TRANSFER. It serves to calibrate production related tolerances and needs to be calculated only once.

The first data area up to CRCY contains the permanent calibration data that is read during start-up. The CRC value CRCY is calculated via the polynomial
$x^{16}+x^{14}+x^{12}+x^{11}+x^{8}+x^{5}+x^{4}+x^{2}+x^{0}(0 \times 15935)$
with the start value of $0 x F F F F$.

The second data area following CRCY contains configuration data that is required only in specific modes. It is read selectively when required. To ensure a secure transmission of data, these data is protected in small groups with 8 bit CRC values.

The polynomial used is
$x^{8}+x^{5}+x^{3}+x^{2}+x^{1}+x^{0}(0 \times 12 F)$
with a start value of $0 x F F$.

The four calibration values ATK, AITKO, AITKL and AOCT are calculated during chip production and stored internally (OTP). Via the configuration bit SEL_ETK, it is possible to choose between internal (OTP) and external (EEPROM) calibration during start-up. In both cases, the values that are stored in the EEPROM are included in the CRC calculation. If the EEPROM value is not used by ATK, it must be set to the default value.

Rev A1, Page 24/55

Description of the data in the EEPROM

In the register AOGVsxI, the LSBs of each 9 bit register AGVP1, AGVN1, AGVP2, and AGVN2 are organized as follows:

AGVP1 = AGVP1h \& Bit3 (AOGVsxl)
AGVN1 = AGVN1h \& Bit2 (AOGVsxl)
AGVP2 = AGVP2h \& Bit1 (AOGVsxl)
AGVN2 = AGVN2h \& Bit0 (AOGVsxl)

In addition, the register AOGVsxl contains the register AOV as follows:

AOV = Bit6:4 (AOGVsxI)

The register AITKQ_AOCT is divided as follows:

AITKQ = Bit7:5 (AITKQ_AOCT)
AOCT = Bit4:0 (AITKQ_AOCT)

	tion m
A	Current output 0... 20 mA
B	Current output 4... 20 mA
C	Current output 0...2.0 mA ($=$ PT100)
D	Current output 0... $200 \mu \mathrm{~A}$ ($\hat{=} \mathrm{PT} 1000$)

Table 14: Description m (Tab. 16)

Description n	
A	Voltage input $\pm 10 \mathrm{~V}$
B	Voltage input $\pm 1 \mathrm{~V}$
C	Voltage input $\pm 100 \mathrm{mV}$
D	Voltage input $\pm 10 \mathrm{~m} \mathrm{~V}$
E	Voltage input $-17.5 \ldots 87.5 \mathrm{mV}$
F	Voltage input $-4.375 \ldots .21 .875 \mathrm{mV}$
G	Current input $-20 \ldots 20 \mathrm{~mA}$
H	Current input $4 \ldots 20 \mathrm{~mA}$

Table 15: Description n (Tab. 16)

Rev A1, Page 25/55

Name	Description	Default value	Digit	Interpretation/correction faktor
ATK	Bandgap temperature coefficient	0x40	unsigned	$1 \mathrm{LSB} \approx-0.6 . . .-0.2 \mathrm{mV}$ (non-linear)
AITKL, AITKQ	Current measurement (linear, square) temperature coefficients	0x00	unsigned	$\begin{aligned} & 1+\frac{\text { AITKL } * \text { CHII__TEMP }^{2}}{2^{18}} \\ & -\frac{A I T K Q * C H I P_{-} T E M P^{2}}{2^{22}} \end{aligned}$
AOCT	Chip temperature offset	0b00000	signed (2 K)	$1 \mathrm{LSB}=1 \mathrm{~K}$
AOSZ	Oscillator offset, left-aligned (i.e. 0xFE in EEPROM)	0x7F	Bit $6=$ sign Bit 5:0 = value	$\begin{array}{ll} 1+\frac{A O S Z}{c_{1}}, & c_{1}=192 \text { for } A O S Z \geq 0 \\ \frac{1}{1-\frac{A O S Z}{c_{2}}}, & c_{2}=180 \text { for } A O S Z<0 \end{array}$
AGVPx	Positive voltage output gain	0x100	unsigned	$\frac{\frac{R_{\mathrm{G}}}{R_{\mathrm{A}}}+0.5}{\frac{R_{\mathrm{G}}}{R_{\mathrm{A}}}+\frac{A G V P_{X}}{2^{9}}}, \quad \frac{R_{\mathrm{G}}}{R_{\mathrm{A}}}=19.2$
AGVNx	Negative voltage output gain	0x100	unsigned	$\frac{\frac{R_{\mathrm{G}}}{R_{\mathrm{A}}}+0.5}{\frac{R_{\mathrm{G}}}{R_{\mathrm{A}}}+\frac{A G V N X}{2^{9}}}, \quad \frac{R_{\mathrm{G}}}{R_{\mathrm{A}}}=19.2$
AOIAx	Current output 4... 20 mA offset	0x80	unsigned	$\frac{\frac{R_{G}}{R_{\mathrm{A}}}+0.5}{\frac{R_{\mathrm{G}}}{R_{\mathrm{A}}}+\frac{A O I A X}{2^{8}}}, \quad \frac{R_{\mathrm{G}}}{R_{\mathrm{A}}}=15.5$
AOV	Voltage output offset (valid for CH_1 and CH_2)	Ob000	unsigned	$1 \mathrm{LSB}=1.28 \mathrm{mV}$
AGIAmx	Current output gain, for m see Tab. 14, minus offset at $4 . . .20 \mathrm{~mA}$	0x80	unsigned	$\frac{\frac{R_{\mathrm{G}}}{R_{\mathrm{A}}}+0.5}{\frac{R_{\mathrm{G}}}{R_{\mathrm{A}}}+\frac{A G \mid A m x}{2^{8}}}, \quad \frac{R_{\mathrm{G}}}{R_{\mathrm{A}}}=16.6$
AGFnx	Voltage/current input gain, for n see Tab. 15	0xDE7A	signed (2 K)	$X=\left(1.5+\frac{A G F n x}{2^{15}}\right) *\left(X^{\prime}+A O F n x\right)$
AOFnx	Voltage/current input offset, for n see Tab. 15	0x0000	signed (2 K)	(see AGFnx)

Table 16: Description of EEPROM data

iC-GD

UNIVERSAL I/O INTERFACE

CALIBRATION

Bandgap

The adjustable on-chip, second-order temperature-compensated bandgap is the voltage reference of the iC-GD. For adjusting the voltage reference, the parameter with the lowest temperature coefficient is calculated. This value is calculated during the production process and stored on-chip (OTP). It can be overwritten by a value stored in the external EEPROM. A bandgap voltage voltage that is too low is indicated in the supervisory register SPV_INT.

Bias

The reference current of the iC-GD is generated by an external resistor, RREF, between the pins RP and RN. To achieve a high accuracy of the current outputs, a resistor with a low temperature coefficient is required. The absolute value is not critical, but must not exceed $\pm 1 \%$ to remain within the calibration range of the current outputs. The current in the resistor is monitored and the status is indicated in the supervisory register SPV_REG. When leaving the tolerance range, it switches to an on-chip generated current. To prevent voltage drop on the supply line and bond wire at pin RN, this pin must not be connected externally to ground.

Clock

An adjustable, internal oscillator generates a 2 MHz clock with a low temperature coefficient. A PLL multiplies this by the factor of 8 for use as the $\mu \mathrm{C}$ system
clock. This PLL is also monitored and its status signalled in the supervisory register SPV_INT.

Calibration

The required calibration values can be transferred to the iC-GD in two different ways:

1. The calibration values are written via $I^{2} \mathrm{C}$ directly into the EEPROM. These changes are not directly transfered to the chip and require a restart (changing the mode will only be sufficed for calibration data that is reloaded selectively on demand i.e. AGIAmx, AGFnx, AOFnx).
2. The calibration values are written directly into the on-chip registers via SPI. Since these registers are not accessible in regular operation, the calibration mode must be activated. After all required calibration data have been calculated, they are also written into the EEPROM.

Calibration mode is activated by the register SPI_LOCK_RESET. If calibration mode is active, the internal register addresses used for the SPI communication differ partly from the valid addresses. If registers other than the calibration registers must be used, calibration mode must be deactivated again by the register SPI_LOCK_RESET. The remaining opcodes, including those for the transmission of process data, remain fully functional. Table 17 shows the valid internal addresses for calibration mode.

UNIVERSAL I/O INTERFACE

Rev A1, Page 27/55

Name	Internal address	Hints and further settings
ATK	0x2C	
AITKL	0x69	
AITKQ, AOCT	0x7F	AITKQ: bits(7:5), AOCT: bits(4:0)
AOSZ	0x68	Requires a waiting time of 200μ s after writing
AGVP1h	0×28	
AGVN1h	0×29	
AGVP2h	0x2A	
AGVN2h	$0 \times 2 B$	
AGVsxI	0x1F	
AOIA1	0x1E	
AOIA2	0x2F	
AGIAm1	0x1D	
AGIAm2	0x2E	
AGFn1	0x0E-0x0F	REG(0x0C) $=0 \times 5 \mathrm{C}, \mathrm{REG}(0 \times 3 \mathrm{~A})=0 \times F F(*)$
AGFn2	0x0E-0x0F	REG(0x0C) $=0 \times 5 \mathrm{D}, \mathrm{REG}(0 \times 3 \mathrm{~A})=0 \times F F(*)$
AOFn1	0x0E-0x0F	REG(0x0C) $=0 \times 5 \mathrm{E}, \mathrm{REG}(0 \times 3 \mathrm{~A})=0 \times F F(*)$
AOFn2	0x0E-0x0F	REG(0x0C) $=0 \times 5 \mathrm{~F}, \mathrm{REG}(0 \times 3 \mathrm{~A})=0 \times F F(*)$

Table 17: Internal calibration register addresses
(*) The order is relevant. First, the date, then the fur- $^{(}$ ther settings in order as shown in table 15 must be set. Register 0x3A acts as trigger.

ATK - Bandgap TK

AOCT - Chip temperature measurement offset AITKQ, AITKL - Current measurement resistor TK The calibration of the bandgap, the chip temperature and the current- measurement resistor is performed during chip-production. The values are stored on-chip (OTP). A read access is possible via the register table according to table 17.

AOSZ oscillator

The calibration of the oscillator is done via the register AOSZ(6:0) in the range of approx. $\pm 31.5 \%$ with a resolution of approx. 0.5%. To this end, a divided integer frequency of the internal clock (PWM) can either be output at the digital output IA1 or at pin SYNC1.

For output at IA1, the counter can be used in PWM mode. The output at the SYNC1 pin requires an additional command according to table 18. It shows the output of a 10 kHz signal at pin SYNC1 by way of example. Determined by the system, the first period is approx. 80 ns shorter when output at pin SYNC1.

The oscillator must not be operated over its nominal frequency, since this can crash the internal $\mu \mathrm{C}$ and cause data errors. Thus during start-up, the lowest possible frequency is used. When reading the frequency from the EEPROM after start-up, the value is only accepted if the respective CRC is correct.

There are no limitations for the calibration mode. For calibration, two iterations of the following equation with a start value of $A O S Z_{0}=-63$ are usually required. Based on $A O S Z_{n}$ and $f_{\text {mess }}$, the respective valid equation must be selected (4 cases).

Attention should be paid to the format of AOSZ according to table 16 which does not represent a two's complement value. The start value corresponds to 0xFE (left-aligned, LSB unused, MSB = sign, remainder = value) in the EEPROM.

Command	Effect
BX 0006	IO_SEL_1P = CNT
BX 0143	SYNC_SEL_1 = DISO
BX 0331	Counter value $1=\mathrm{PWM}$ in HS mode
DX 2803200190	$\mathrm{T}_{\text {ges }}=100 \mu \mathrm{~s}, \mathrm{~T}_{\text {high }}=50 \mu \mathrm{~s}$
0X 80	PROCESS DATA 1 = '1' (PWM on)
For additional output via SYNC1 only:	
BX 39 AA	Activate calibration mode
BX 2580	Start output PWM \rightarrow SYNC1
	* Measurement *
BX 2500	Stop output PWM \rightarrow SYNC1
BX 39 A 5	Deactivate calibration mode

Table 18: Calibration AOSZ

Rev A1, Page 28/55

Case 1: $\quad A O S Z_{\mathrm{n}} \geq 0, \quad A O S Z_{\mathrm{n}} \geq c_{1} *\left(\frac{f_{\text {meas }}}{f_{\text {set }}}-1\right)$

$$
A O S Z_{\mathrm{n}+1}=A O S Z_{\mathrm{n}} * \frac{f_{\mathrm{set}}}{f_{\mathrm{meas}}}+c_{1} *\left(\frac{f_{\mathrm{set}}}{f_{\mathrm{meas}}}-1\right)
$$

Case 2: $\quad A O S Z_{\mathrm{n}} \geq 0, \quad A O S Z_{\mathrm{n}}<c_{1} *\left(\frac{f_{\text {meas }}}{f_{\text {set }}}-1\right)$

$$
A O S Z_{\mathrm{n}+1}=\left(1-\frac{f_{\text {meas }}}{f_{\text {set }}} * \frac{1}{1+\frac{A O S Z_{\mathrm{n}}}{c_{1}}}\right) * c_{2}
$$

Case 3: $\quad A O S Z_{\mathrm{n}}<0, \quad A O S Z_{\mathrm{n}} \geq c_{2} *\left(1-\frac{f_{\text {set }}}{f_{\text {meas }}}\right)$

$$
A O S Z_{\mathrm{n}+1}=\left(\frac{f_{\text {set }}}{f_{\text {meas }}} * \frac{1}{1-\frac{A O S Z_{\mathrm{n}}}{c_{2}}}-1\right) * c_{1}
$$

Case 4: $\quad A O S Z_{\mathrm{n}}<0, \quad A O S Z_{\mathrm{n}}<c_{2} *\left(1-\frac{f_{\text {set }}}{f_{\text {meas }}}\right)$

$$
A O S Z_{\mathrm{n}+1}=A O S Z_{\mathrm{n}} * \frac{f_{\mathrm{meas}}}{f_{\mathrm{set}}}+c_{2} *\left(1-\frac{f_{\mathrm{meas}}}{f_{\mathrm{set}}}\right)
$$

with

$$
c_{1}=192, \quad c_{2}=180
$$

AOV - Voltage output offset

The output voltage offset calibration, UPx - UNx, is done for both channels via the 3-bit register AOV. The calibration range covers approx. 9 mV in steps of 1.28 mV .

With AOV $=0 \mathrm{~b} 000$ at channel 1 , a voltage of 0 mV (0×0000) is output and the (negative) offset is determined. The calibration value AOV then results in:

$$
A O V=-\frac{V_{\text {meas }}}{1.28 m V}
$$

AGVsx - Voltage output gain

The output voltage gain calibration, UPx - UNx, is centrally carried out via the internal 5.25 V voltage reference of the 14-bit D/A converter. The calibration range based on the output voltage of $\pm 10.5 \mathrm{~V}$ is approx. 512 mV in steps of approx. 1 mV .

For this, a previous calibration of the offset (AOV) is required.

The four calibration values $\operatorname{AGVPx}(8: 0)$ and AGVNx(8:0) must be calculated for both channels and separately for the positive and negative output range. For start value $\mathrm{AGVsx}_{0}=0 \times 100$ and the maximum magnitude of voltage $V_{\text {set }}$ must be performed:
$A G V s x_{\mathrm{n}+1}=A G V s x_{\mathrm{n}} * \frac{V_{\text {meas }}}{V_{\text {set }}}+2^{9} * 19.2 *\left(\frac{V_{\text {meas }}}{V_{\text {set }}}-1\right)$

AOIAx - Current output offset

The current output offset applies to the 4 to 20 mA range only. The calibration range is approx. 0.25 mA . The calibration steps are approx. $1 \mu \mathrm{~A}$.

The calibration is performed with IAx at $4 \mathrm{~mA}(0 \times 0000)$ via $\operatorname{AOIAx}(7: 0)$. For this, two iterations according to the following equation with the start value $A O I A x_{0}=0 \times 80$ are performed:
$A O I A x_{\mathrm{n}+1}=A O I A x_{\mathrm{n}} * \frac{I_{\text {meas }}}{I_{\text {set }}}+2^{8} * 15.5 *\left(\frac{I_{\text {meas }}}{I_{\text {set }}}-1\right)$

AGIAmx - Current output gain

The calibration range for the current output gain is approx. 6.1% (minus offset of the 4 to 20 mA range). The calibration steps are $1 / 256$ (i.e. e.g. selected in the 0 to 20 mA range with 21 mA : calibration range approx. 1.28 mA , calibration steps approx. $5 \mu \mathrm{~A}$).

For the calibration of the current output gain, a previous calibration of the current output offset (AOIAx, only in the range of 4 to 20 mA) is required.

The output current calibration at IAx is carried out for both output ranges of 0 to 20 mA as gain of the fullscale value of approx. $21 \mathrm{~mA}(0 x F F C)$ via $\operatorname{AGIAAx}(7: 0)$ or $A G I A B x(7: 0)$.

For the ranges 0 to 2 mA or 0 to $200 \mu \mathrm{~A}$, that are primarily intended for the PT100 or PT1000 measurement, the gain is calculated at 1.7 mA or $170 \mu \mathrm{~A}$ (both $0 \times C F 3 C$) via $\operatorname{AGIACx}(7: 0)$ or $\operatorname{AGIADx}(7: 0)$. This value is used for energizing the PT elements and is stored on the chip. The calibration is made with in each case 2 iterations according to the following equation with the start value $\mathrm{AGIAmx}_{0}=0 \times 80$:

$$
\begin{array}{r}
A G I A m x_{\mathrm{n}+1}=A G I A m x_{\mathrm{n}} * \frac{I_{\text {meas }}-l_{\text {offset }}}{I_{\text {set }}-I_{\text {offset }}} \\
+2^{8} * 16.6 *\left(\frac{I_{\text {meas }}-l_{\text {offset }}}{I_{\text {set }}-l_{\text {offset }}}-1\right)
\end{array}
$$

AGFnx, AOFnx

The current/voltage measurement calibration is made for the different measuring ranges by setting the offset (AOFnx) and the gain (AGFnx). Required is a previous successful calibration of the voltage outputs.

At AGFnx $=0 \times C 000$ and AOFnx $=0 \times 000$, several voltage/current values are externally applied ($\mathrm{X}_{\text {set }}$) and
read back via the SPI ($X_{\text {meas }}$). The two maximum values are used for all measuring ranges (value 1 and 2). In addition, for the symmetric measuring ranges, the offset at $0 \mathrm{~V} / 0 \mathrm{~mA}$ (value 0) is determined. For the current measurement offset, also the current chip temperature and the temperature coefficient values AITKQ, AITKL are required. The latter are stored on the chip, see table 17. The required values are used unitless in the format of the process data: $X_{\text {set }}$ und $X_{\text {meas }}$ as signed numbers, and additionally for the current measurement AITKQ, AITKL and CHIP_TEMP, all as unsigned numbers.

The following four conditions must be kept:

$$
\begin{array}{cc}
\left(1.5+\frac{A G F n x}{2^{15}}\right) *\left(A O F n x+2^{15}\right)>2^{15}-1 & \begin{array}{l}
\text { should be distributed } \\
\text { Example } \\
\left(1.5+\frac{A G F n x}{2^{15}}\right) *\left(A O F n x-2^{15}\right)<-2^{15}
\end{array} \\
\text { Point 0: 0V, point } 1:+ \\
A G F n x=\left(\frac{X_{\text {set } 1}-X_{\text {set } 0}}{X_{\text {meas } 1}-X_{\text {meas } 0}}+\frac{X_{\text {set } 2}-X_{\text {set } 0}}{X_{\text {meas } 2}-X_{\text {meas } 0}}-3\right) * 2^{14} \\
A O F n x_{(V I)}=\frac{X_{\text {set } 0}}{1.5+\frac{A G F n x}{2^{15}}}-X_{\text {meas } 0} \\
A O F n x_{(\mathrm{Cl})}=\left(\frac{X_{\text {set } 0}}{1.5+\frac{A G F n x}{2^{15}}}-X_{\text {meas } 0}\right) * \frac{1}{f_{\mathrm{T}}}
\end{array}
$$

2-point calibration (asymmetrical ranges)

The following formulae are valid for the ranges -17.5 mV to $87.5 \mathrm{mV},-4.375 \mathrm{mV}$ to $21.875 \mathrm{mV}, 4$ to 20 mA . Point 1 and point 2 are to be adjusted exactly.

$$
\begin{aligned}
& \left(1.5+\frac{A G F n x}{2^{15}}\right) * A O F n x<2^{15}-1 \\
& \left(1.5+\frac{A G F n x}{2^{15}}\right) * A O F n x>-2^{15}
\end{aligned}
$$

3-point calibration (symmetrical ranges)

The following formulae are valid for the ranges $\pm 10 \mathrm{~V}$, $\pm 1 \mathrm{~V}, \pm 100 \mathrm{mV}, \pm 10 \mathrm{mV}, \pm 20 \mathrm{~mA}$.

Point 0 is calibrated exactly (to use for offset), point 1 and point 2 are calibrated best possible. The points should be distributed equidistantly.

Example

Example

Point 0: 0 V , point 1: +10 V , point 2: -10 V .

$$
\begin{aligned}
A G F n x & =\left(\frac{X_{\text {set 2 }}-X_{\text {set } 1}}{X_{\text {meas 2 }}-X_{\text {meas 1 }}}-1.5\right) * 2^{15} \\
A O F n x_{(\mathrm{VI})} & =\frac{X_{\text {set } 1} * X_{\text {meas 2 }}-X_{\text {set } 2} * X_{\text {meas 1 }}}{X_{\text {set 2 }}-X_{\text {set } 1}} \\
A O F n x_{(\mathrm{Cl})} & =\frac{X_{\text {set } 1} * X_{\text {meas 2 }}-X_{\text {set } 2} * X_{\text {meas } 1}+c_{0} *\left(f_{\mathrm{T}}-1\right) *\left(X_{\text {set } 2}-X_{\text {set } 1}+X_{\text {meas } 1}-X_{\text {meas 2 }}\right)}{\left(X_{\text {set } 2}-X_{\text {set } 1}\right) * f_{\mathrm{T}}}
\end{aligned}
$$

$$
\text { with } \quad c_{0}=7710, \quad f_{\mathrm{T}}=1+\frac{A I T K L * C H I P_{-} T E M P}{2^{18}}-\frac{A I T K Q * C H I P_{-} T E M P^{2}}{2^{22}}
$$

STARTUP, RESET, WATCHDOGS

When the supply voltages are applied and VCC exceeds the undervoltage reset threshold (Vtu(VCC)hi), the iC-GD starts with the self-configuration. The internal registers are initialized and the configuration and calibration data from the EEPROM are read. During the phase of self-configuration, (RDY = lo), SPI communication is blocked.

The EEPROM is read via the $I^{2} C$ interface. Here, the configuration and calibration data are read from the EEPROM and written into the internal registers. During the entire configuration, a 16-bit CRC checksum is calculated and compared with the checksum that is also stored in the EEPROM. If these do not match, the configuration will be rejected and the chip returns to its default state. The error status is stored in register SPV_REG, bit ST_CONF. Also, a 16-bit checksum is calculated for the calibration data and compared with the checksum stored in the EEPROM. If those do not match, only the error status is stored in the register SPV_REG, bit ST_CALIB. The read data is kept, except for the frequency calibration. Additionally, in certain modes further calibration data from the EEPROM is read and protected by a separate 8 -bit CRC if required.

The iC uses the memory area of the EEPROM shown in table 13. The subsequent memory area is freely available to the user.

The chip then provides several possibilities for internal and external resetting. The cause of the last reset is stored in a status register.

- Supply voltage: If the supply voltage VCC drops below the undervoltage reset threshold (Vtu(VCC)lo), the chip is reset. As stated above, it restarts when the supply voltage is restored.
- NRES pin: If the NRES pin is low for at least tRESIo, the chip is reset. Shorter pulses may but do not have to cause a reset.
- Reset via SPI: The chip can be reset immediately by writing into the register SPI_LOCK_RESET the relevant command.
- Watchdog SPI: An internal watchdog timer can be optionally enabled, to monitor the SPI communication. If no valid SPI communication takes place during a certain time period (see table 19), the watchdog resets the iC. A valid communication is one of the opcodes "PROCESS DATA 1/2/1 and 2".
- Watchdog $\mu \mathrm{C}$: An internal watchdog monitors the internal processor. The processor operates the watchdog regularly during its main routine. If the watchdog is not operated within the the $\mu \mathrm{C}$ time-out (see table 19), it resets the iC.

Reset times	
Watchdog $\mu \mathrm{C}$	$125 \mathrm{~ms} \pm 5 \mathrm{~ms}$
Watchdog SPI	$53 \mathrm{~ms} \pm 3 \mathrm{~ms}$

Table 19: Watchdogs (times are only valid with calibrated oscillator)

SPI

The iC-GD is controlled via an SPI interface. The SPI interface allows fast reading of measurement data and the setting of actuator values as well as reading and writing of configuration registers. The SPI provides a bridge to the $I^{2} \mathrm{C}$ interface and thus also to the connected EEPROM.

The SPI operates synchronously with the supplied clock. To this end, it samples the input data with the falling edge and outputs the data with the rising edge. By default, it outputs the input data with half a clock delay. The iC is activated by the NCS pin, so that the subsequent 8 bits can be interpreted as control code. This contains a 4-bit opcode, a 3-bit address and a broadcast bit. If the iC as such is not addressed, it hibernates and only relays the input data. Otherwise, it interprets the opcode.

An additional delay in the signal path (SDO) between 0 and 7 clocks can be set via the configuration bit EN_UCM. Thus, the total delay of a daisy chain of up to 8 iCs can be set up to a multiple of 8 clocks. This has to be carried out in the last iC of the SPI chain. This iC automatically determines the required number of clocks of additional delay by means of its address. This allows proper control by a $\mu \mathrm{C}$.

The SPI protocol is optimized for the transfer of sensor and actuator data. Sensor data is available directly following the opcode and can be clocked out subsequently. Actuator data can be sent directly following the opcode. To read data from internal registers, a provisioning time of 8 clocks following the opcode and the address is required, which can be filled with optional data. To write register data, no padding is required by the SPI. When
reading and writing data via $\mathrm{I}^{2} \mathrm{C}$, e.g. to the EEPROM, one has to poll for the end of this process before a new $I^{2} \mathrm{C}$ communication can be started.

In addition, the SPI provides opcodes as respective SYNC signals (edges and channels) and opcodes for fast reading of the registers CH_STAT_REG and IRQ_FLAG_REG. Figure 5 shows the SPI communication.

The SPI is blocked during the startup (RDY = 0). No communication is possible during this time. In normal operation, $30 \mu \mathrm{~s}$ after the beginning of startup at the latest (usually with the rising edge of NRES), NCS must be high. Otherwise the iC performs a quickstart that skips reading the EEPROM and the internal calibration
data. In this case, both CRC error bits are set (see chapter Calibration).

Figure 3 shows the SPI timing. The given times are listed under operating conditions.

Figure 4 shows by way of example a daisy chain of three iCs with five active channels that are controlled by $a \mu \mathrm{C}$. The input data noted above the iCs are sampled with the falling edge at NCS for all iCs simultaneously and then clocked out via SPI. The output data written by the SPI is noted below the iCs and is also output simultaneously with the rising edge at NCS for all iCs (for analog outputs: subsequently with the next refreshcycle).

Daisy chain example

Figure 3: SPI-Timing

(*) read back of digital output
Figure 4: Example of a three iC daisy chain with five active channels

UNIVERSAL I/O INTERFACE

(iC) Haus

Rev A1, Page 33/55

Figure 5: SPI Communication

iC-GD

UNIVERSAL I/O INTERFACE

Rev A1, Page 34/55

COUNTER

Via the two digital inputs with their following spike filters, two 32-bit wide counters can be operated. In single mode, the counters are operated independently. In dual mode (see below), one counter is controlled by both inputs. The counters can also be used as PWM generators.

For each counter, one reference value can be configured that sets a status bit and causes an interrupt, when reached. In addition, a bit can be configured that determines whether an interrupt is caused once or every time the reference value is reached. In the latter case it can be reset via the register SPI_LOCK_RESET. This prevents the setting of a status bit and the triggering of an interrupt in case the counter fluctuates around the reference value or is at the reference value. The same functions are available for the second reference value and the overflow and underflow of the counter.

The bit CNT_RAR allows the configuration of a counter to be reset when the reference value is reached (reset at reference). The reference value itself is not reached though. Additionally, the input signal can be inverted prior to internal processing and the counting direction (up/down) be set in most counter modes.

The counters operate synchronously with the SYNC signal or asynchronously so that the current value is supplied. Some modes do not allow external synchronization because the respective synchronization is carried out internally. This affects the time measurement and the synchronization triggered by the second channel. The synchronous mode also allows reading the asynchronous (current) counter value by sending a SYNC command to the relevant iC via the SPI and reading the value as regular sensor data. Tab. 21 gives an overview of usable configuration bits depending on the selected mode. 'X' means 'possible', '-' means 'not possible' (bit is ignored), '(-)' means 'possible but not useful'.

Additionally, the counter allows the generation of a pulse-width modulated signal in two different modes.

- Simple PWM: The PWM mode is selected and both 16 bit periods t_high and t_ges as in Table 20 and Figure 6 are written to the reference register. The PWM can be switched on and off via the process data. When switched on, it re-starts its period with '1'. In addition, the pulse-width can be changed during run-time by writing the lower half of the reference register. In this case, a period that has already started internally is completed and then the new value is adopted. When the cycle time is changed, the current
period is terminated immediately and a new period is started.
- PWM with activation pulse: Unlike in simple PWM mode, an activation pulse is generated at startup before the PWM automatically switches to the regular PWM mode. Note: The registers are interpreted differently than the simple PWM mode (see Figure 6). A change of the pulse width is not intended in this mode. It is possible though by writing the entire SET_CNT register with 0×0000 in the upper half. In contrast to the simple PWM mode, here the period will not be completed but starts immediately with a new period. When the cycle time is changed, the current period is terminated immediately and a new period is started without a new activation pulse.

In both modes, the PWM mode supports a high-speed mode (HS) with a resolution of 125 ns , a cycle time of up to 8.192 ms and a low-speed mode (LS) with a resolution of 16 ns and a cycle time of up to 1.048 s (see Table 20). The initial pulse may be up to 1 LSB shorter due to the temporal resolution of the internal clock in low-speed mode. The reference register can either be written completely (4 bytes) or only its low-order part (2 bytes). For simple PWM, the latter complies with a change of t high. The PWM then is output at IAx ($\mathrm{X}=$ $1,2)$. Time t_ges must not be 0×0000.

These following modes are supported by the counters:

Single mode

- Pulse counter: Counts pulses (= rising edges) of the respective channel.
- Time measurement period: Measures the time between two rising edges. No external sync possible because it is synchronized with the rising edge.
- Time measurement pulse width: Measures the time that the respective channel is high. No external sync possible because it is synchronized with the falling edge.
- Pulse-width modulation: Generates a PWM signal with a duty cycle depending on REF_CNT_x. The High-time, cycle time and, if necessary, the activation pulse time are configurable (see figure 6).

Dual Mode

- Pulse counter with trigger: Counts pulses on CH _1. CH 2 serves as a trigger to enable the counter value to be output. The counter value $\mathrm{CH}_{-} 1$ is not reset. Since $\mathrm{CH} _2$ performs the function of synchronization, no external sync is possible.

UNIVERSAL I/O INTERFACE

Rev A1, Page 35/55

- Pulse counter with reset: Counts pulses at CH_1. CH 2 acts as reset input. While CH _2 is high, the counter is reset.
- Pulse counter with gated signal: Counts pulses at CH_1, if CH_2 is high.
- Pulse counter with direction signal: Counts pulses at CH _1, positive for $\mathrm{CH} 2=0$, negative for $\mathrm{CH} 2=$ 1.
- Time measurement edge to edge between channel 1 and 2: Measures the time of the rising edge at $\mathrm{CH} _1$ to the rising edge at $\mathrm{CH} _2$. In case of sev-
eral consecutive rising edges at CH_1, the last one (minimum time) is measured. In case of several consecutive rising edges at CH 2, the time to the last rising edge of $\mathrm{CH} _1$ is measured. If both edges rise simultaneously (within the sampling resolution), the time to the preceding rising edge of $\mathrm{CH}_{-} 1$ is measured, (i.e. not 0). CH 2 acts as synchronization input, no external sync possible.
- Incremental encoder with single, dual and quadruple evaluation.

Mode	Resolution LSB	Maximum time
Time measurements	125 ns	537 s
PWM, HS mode	125 ns	8.192 ms
PWM, LS mode	$16 \mu \mathrm{~s}$	1.048 s

Table 20: Counter times

Mode	SYNC	CBE	DNU	RAR	DCB
Pulse counter	X	X	X	X	X
Time measurement period	-	-	-	$(-)$	X
Time measurement pulse width	-	-	-	$(-)$	X
Pulse counter with trigger	-	X	X	X	X
Pulse counter with reset	X	X	X	X	X
Pulse counter with Gate	X	X	X	X	X
Pulse counter with direction signal	X	X	-	X	X
Time measurement CH1 \rightarrow CH2	-	-	-	$(-)$	X
Incremental encoder 1 x	X	-	-	$(-)$	X
Incremental encoder 2 x	X	-	-	$(-)$	X
Incremental encoder 4 x	X	-	-	$(-)$	X

Table 21: Overview of the usable counter setting bits

PWM w/o activation pulse

PWM with activation pulse

Figure 6: Register interpretation and PWM modes

MIXED OPERATION

Provided that functions do not overlap, two operating modes can be used on one channel simultaneously. The pins IA1 and IA2 are available as digital input or output pins or current outputs if only the analog voltage inputs, the voltage outputs or the current input function at the particular channel is used. 4-wire PT temperature sensors require a current output IAx and a differential voltage input. A voltage output in conjunction with a 2- or 3-wire PT temperature sensor on one channel is
not possible. The counter (only available as the primary function) complies with the digital input, the PWM complies with a digital output.

The primary function enables a fast data transfer via SPI command. The secondary function is only able to transfer data via register access and therefore is slower.

The following table shows all possible operating modes.

Rev A1, Page 37/55

Possible mixed operating modes (primary and secondary function)										
Function primary					$\begin{aligned} & 0 \times \\ & \frac{0}{7} \\ & \frac{\pi}{0} \\ & \frac{2}{3} \\ & \gg 0 \end{aligned}$			\sum_{i}^{∞}		
Digital input			X	X	x					
Digital output *			x	x	x					
Voltage input	X	X				X		x		
Current input	X	X				x		x		
Voltage output	x	X				x		x		
Current output			X	x	x					
Counter			X	X	X					
PWM (*)			x	x	x					
Thermo couples	X	X				x				
2, 3, 4-wire PTxxxx						(x) (**)				

(*) The digital output can be digitally read back when operating as primary or secondary function. This is no mixed mode.
(**) When measuring PT, the iC automatically selects the current output as secondary function to provide the measuring current. Further use is not possible.

Table 22: Mixed operating modes

MONITORING

Voltage monitoring

The supply voltages VDA, VB, VNB, and VCC and the internally generated voltages VPA and VPD are monitored. If they fall below their respective thresholds, the corresponding error bits are set. If the digital outand input is not used, VDA can also be supplied with $\mathrm{VDA}=\mathrm{VB}=15 \mathrm{~V}$ to omit the 24 V supply. Here, the bit VDA_VB must be set to avoid an alert of the VDA monitor. Alternatively, the relevant interrupt generation can be masked.

Chip-temperature measurement

The iC features a configurable internal 8-bit tempera-ture-to-digital converter to measure the chip temperature. The temperature is available via SPI. The exact chip temperature is also required for the current measurement via a configuralbe internal resistor to account for its TK. Both calibrations are carried out during the chip production process and are stored internally (OTP). They can be overwritten with a value from the external EEPROM.

Overtemperature behavior

The iC features two-stage temperature monitoring. When the shutdown temperature T1 is reached, the digital outputs, the current outputs, and the voltage outputs are switched off if the relevant output cannot saturate
and therefore is responsible for the overtemperature. When the shutdown temperature T2 is reached, all outputs are switched off. The outputs automatically restart, when the chip temperature falls below the restart temperature. The overtemperature detection T2 can be deactivated for test purposes.

Register setting

The iC features three registers for general supervision: The supervisory register (SPV_REG) indicates errors at the voltage supplies, excessive chip temperature and CRC errors at configuration or calibration. The two channel-status registers (CH_STAT_REG) contain information on the functions in use on each channel and the primary and secondary function. The interrupt register (IRQ_FLAG_REG) is combinatorial and indicates received interrupts. Enable registers allow masking of individual status bits.

Once set, error bits stay set, even if the error does not persist. The bits are reset during the reading of the particular register (RD + RST). If the error persists, the error bit is set again. If the transmission of individual bits is deactivated by entries of the particular enable register, the register is not touched. When the bits are activated, also previosly occured errors are transmitted. An overview is shown in Figure 7.

Rev A1, Page 38/55

Figure 7: Overview supervisory, channel status, and interrupt

Rev A1, Page 39/55

OPCODES

The first byte sent via SPI contains the address of the iC and the command. The address is defined by three bits that address the iC when they match its hard-wired address. A broadcast is also possible; here all chips are addressed and the address is ignored; the command defines the type of access. Possible are:

- PROCESS DATA x: The data of the primary channel is transmitted. The iC accepts the data when the addressed channel is configured as input. The iC outputs data when the addressed channel is configured as output. The bit width is adjusted automatically for the chosen mode.
- READ CH_STAT_REG: The channel status register is read, output and reset (RD + RST).
- READ IRQ_FLAG_REG: The interrupt-flag register is read and output. This way, the cause for an interrupt can be determined. It can be reset when no interrupt is indicated any more (formed combinatorial).
- SYNC: The current value is sampled and stored for channels that are configured as input (analog input, digital input, counter, temperature measurement). For channels that are configured as output, the last written value is output. The used edge can be configured per channel via the bit SYNC_INV_x. The Opcode SYNC 1\&2 - rising/falling edge can reproduce
a rising or falling edge and triggers synchronization only when the edge matches the configuration via SYNC_INV_x. The SYNC command has no effect if the channel does not operate synchronously (selectable via SYNC_SEL_x).
- READ INTERNAL REGISTER (single): The addressed register is output.
- WRITE INTERNAL REGISTER (single): The addressed register is written by the following byte.
- READ INTERNAL REGISTER (continuous): Operates like single; here the address is incremented automatically after each byte. This enables reading various consecutive registers. Usage in broadcast is not possible.
- WRITE INTERNAL REGISTER (continuous): Operates like single; here the address is incremented automatically after each byte. This enables the writing of consecutive register. Usage in broadcast is possible. All iCs accept the same data.
- $I^{2} \mathrm{C}$ TRANSFER/STATUS: The $I^{2} \mathrm{C}$ TRANSFER command allows addressing components connected to the iC via $\mathrm{I}^{2} \mathrm{C}$. The iC operates as bridge. Therefore the regular commands of $I^{2} \mathrm{C}$ are mapped. Details can be found in chapter $I^{2} C$. Communication runs in the background. Via $I^{2} \mathrm{C}$ STATUS can be polled for its completion.

Opcodes		
Bits	Description	Values
2:0	Address	0...7: Up to 8 chips individually addressable
3	Broadcast	$\begin{aligned} & 0=\text { single } \\ & 1=\text { broadcast (address irrelevant) } \end{aligned}$
7:4	Command	$\begin{aligned} & 0000=\text { PROCESS DATA 1P } \\ & 0001=\text { PROCESS DATA 2P } \\ & 0010=\text { PROCESS DATA 1P \& 2P } \\ & 0011=\text { READ CH_STAT_REG } \\ & 0100=\text { READ IRQ_FLAG_REG } \\ & 0101=\text { SYNC } 1 \\ & 0110=\text { SYNC } 2 \\ & 0111=\text { SYNC } 1 \& 2 \\ & 1000=\text { SYNC } 1 \& 2-\text { rising edge } \\ & 1001=\text { SYNC } 1 \& 2-\text { falling edge } \\ & 1010=\text { READ INTERNAL REGISTER (single) } \\ & 1011=\text { WRITE INTERNAL REGISTER (single) } \\ & 1100=\text { READ INTERNAL REGISTER (continous) (*) } \\ & 1101=\text { WRITE INTERNAL REGISTER (continous) } \\ & 1110=I^{2} \text { C TRANSFER } \\ & 1111=I^{2} \text { C STATUS } \end{aligned}$

Table 23: Opcodes
(*) Not to be used in broadcast

iC-GD

UNIVERSAL I/O INTERFACE

OPCODE-BASED DATA

PROCESS_DATA_x

The register PROCESS_DATA_x is controlled via the opcode and therefore does not contain a register address itself.

The meaning and length of the opcode complies with the selected mode of the IO_SEL_x register and other involved registers if applicable. The register can transmit 32-bit, 16-bit, and 8-bit data and optionally can be switched off entirely. It contains the data of the primary channels.

PROCESS_DATA_x (DI)			P
bit 6:0 bit 7	0000000		
Digital input after spike filter, optionally inverted			

Table 24: Process data primary channel in DI mode

| PROCESS_DATA_x (DO/PWM) | P | RW - 0x00 |
| :--- | :--- | :--- | :--- |
| bit 6:0 | 0000000 | |
| bit 7 OUT | Output, depending on DO_SEL, optionally inverted:
 PUSH-PULL: Output bit
 LOW-SIDE: $0=$ line low (driver active)
 HIGH-SIDE: $1=$ line high (driver active) | |
| bit 7 IN(*) | Reading of the physical line: digital input after spike
 filter, optionally inverted | |

Table 25: Process data primary channel in DO mode
(*) No overlapping since there are different byes when writing and reading back.

| PROCESS_DATA_x (VI/CI) | P | R - / |
| :--- | :--- | :--- | :--- |
| bit 15:0 | Analog input value, see Tab. 5 | |

Table 26: Process data primary channel in $\mathrm{VI} / \mathrm{CI}$ mode

| PROCESS_DATA_x (VO/CO) | P | W - 0x0000 |
| :--- | :--- | :--- | :--- |
| bit $1: 0$
 bit $15: 2$ | Unused | |
| Analog output value, see Tab. 7 | | |

Table 27: Process data primary channel in VO/CO mode

$\left.$| PROCESS_DATA_x (CNT) | | P |
| :--- | :--- | :--- | | $R(*)-0 \times 0000$ |
| ---: |
| 0000 | \right\rvert\,

Table 28: Process data primary channel in CNT mode
(*) Setting of the counter possible via register communi- $_{\text {- }}$ cation.

| PROCESS_DATA_x (TM) | P | R - / |
| :--- | :--- | :--- | :--- |
| bit $15: 0$ | Temperature, see Tab. 10 | |

Table 29: Process data primary channel in TM mode

CH_STAT_REG

The register CH_STAT_REG is controlled directly via the opcode and therefore does not contain a register address.

The states of both primary channels and other status bits are stored in this register. The states of the channels depend on the selected mode (IO_SEL_xP) and can be activated via the EN_CH_STAT_xP register. When reading, the bits are reset automatically.

Note that bit 2, 3, 4, 5, and 6 can only be (de-)activated together because they are controlled by the same bit of the EN_CH_STAT_xP register. They assume their status independently though. In the following tables this is marked by horizontal lines.

Figure 7 explains the connection between the registers CH_STAT, SPV_REG, IRQ_FLAG_REG, and their enable registers.

CH_STAT_REG		P+	R+RST - 0x0000
bit 6:0	CH_STAT_1P, see Table 31 to 37		
bit 7	CH_STAT_12S_SUM - Sum of CH_STAT_1S and CH_STAT_2S		
bit 14:8 bit 15	CH_STAT_2P, see Table 31 to 37 SPV_REG_SUM - Sum of SPV_REG		

Table 30: Channel status register

| CH_STAT_x (DI) | P | R+RST -
 0000000 |
| :--- | :--- | :--- | ---: |
| bit 0 | Mapping of digital input to spike filter and optional
 invertion (*)
 $1=$ Overcurrent UNx | |
| bit 6 | | |

Table 31: CH_STAT_x in DI mode
(*) When bit ENDOSC_x is activated, the output of the comparator that is also available for SPI is mapped instead.

Rev A1, Page 41/55

CH_STAT_x (DO / CNT(PWM))	P	R+RST - 0000000
bit 0	$1=$ Cable break (*)	
bit 1	$1=$ Channel overtemperature $\left(^{* * *}\right)$	
bit 2	$1=$ Overcurrent IAx (**)	
bit 6	$1=$ Overcurrent UNx	

Table 32: CH_STAT_x in DO/PWM mode
(*) Cable break detection is based on the pull-up/pull-down currents according to Item No. B04/B12. A cable break will only be detected when the driver is inactive and the connected load cannot pull away the current, i.e. in the following operating conditions:

1) Low-side driver configured and switched off (i.e. output at '1').
2) High-side driver configured and switched off (i.e. output at ' 0 ').

The identification has a dead time of $\operatorname{td}()$, ol, to also enable high-resistance loads to discharge the line.
${ }^{* *}$) The status bit for overcurrent is activated when an active driver cannot saturate anymore. This condition can be long-lasting, provided that the overtemperature monitoring remains inactive.
(***) The channel overtemperature, as defined in overtemperature behavior, switches off the digital driver. When the restart temperature is underrun, the driver is activated automatically. Therefore the driver oscillates with a thermal time-constant.

| CH_STAT_x (VI/CI/TM(TE)) | | |
| :--- | :--- | :--- | P | R+RST |
| ---: |
| 0000000 |$|$

Table 33: CH_{-}STAT_x in mode VI/CI/TE
(*) The current underrun is only active during current measurement operation with a configured 4 to 20 mA range and monitors the digital value for falling below $0 x F D 00=3.602 \mathrm{~mA}$.

CH_STAT_x (TM(PT))		P	R+RST -
bit 0	1 = lower range underrun		
bit 1	1 = upper range overrun		
$\begin{aligned} & \text { bit } 2 \\ & \text { bit } 3 \end{aligned}$	1 = lower limit underrun 1 = upper limit overrun		
bit 4 bit 5 bit 6	```1 = cable break UPx (4-wire only)/cable break IA (2/3/4-wire) 1 = cable break UIx (3/4-wire only) 1 = overcurrent UNx```		

Table 34: CH _STAT_x in mode TM(PT)

| CH_STAT_x (VO) | P | R+RST
 0000000 |
| :--- | :--- | :--- | :--- |
| bit 0 | $1=$ overcurrent UPx (pin higher than nominal) | |
| bit 1 | $1=$ overcurrent UPx (pin lower than nominal) | |
| bit 6 | $1=$ overcurrent UNx | |

Table 35: CH_STAT_x in mode VO

CH_STAT_x (CO)		P	R+RST - 0000000
bit 0	$1=$ cable break/R_load(*) IAx		
bit 6	$1=$ overcurrent UNx		

Table 36: CH_STAT_x in mode CO
(*) This bit is set if the cable at the relevant pin is bro- $^{\text {(}}$ ken or the combination of load resistance and current prevents the driver from saturatiing.

CH_STAT_x (CNT except PWM)	P	R+RST - 00000000
bit 0	Mapping of digital input to spike filter and optional inversion (*)	
bit 1	1 = counter underrun	
bit 2	$1=$ counter overrun	
bit 4	$1=$ counter reached reference value bit 5	$1=$ counter reached reference value \#2 (CH_1 only, see bit CNT_E2R) $1=$ overcurrent UNx
bit 6		

Table 37: CH_STAT_x in mode CNT
(*) When bit ENDOSC_x is activated, the output of the comparator that is also available for the counter is mapped instead.

IRQ_FLAG_REG

The register IRQ_FLAG_REG is controlled directly via the opcode and therefore does not contain a register address.

The bits of the CH_STAT_REG register that were activated via EN_IRQ_FLAG_REG are mapped to this register. IRQ_FLAG_REG is no register as such. It is gen-

UNIVERSAL I/O INTERFACE

(C)Hous

Rev A1, Page 42/55
erated combinatorial and therefore can neither be written nor reset. To clear these bits, either CH_STAT_REG must be read whereby set bits are reset or the detection must be deactivated in EN_IRQ_FLAG_REG. Figure 7
shows the connection between the registers $\mathrm{CH}_{\text {_S }}$ STAT, SPV and IRQ_FLAGS.

IRQ_FLAG_REG	l	R - NA
bit 6:0	Active interrupts of CH_STAT_REG_1P bit 7 Sum of active interrupts of	
bit 14:8	CH_STAT_REG_1S and CH_STAT_REG_2S bit 15	Active interrupts of CH_STAT_REG_2P Sum of activen interrupts of SPV_REG

Table 38: IRQ-Flag-Register

iC-GD
 UNIVERSAL I/O INTERFACE

(10) Hous

Rev A1, Page 43/55

REGISTER MAP								
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Counter								
0x20	SET_CNT_1(31:24)							
0x21	SET_CNT_1(23:16)							
0x22	SET_CNT_1(15:8)							
0x23	SET_CNT_1(7:0)							
0x24	SET_CNT_2(31:24)							
0x25	SET_CNT_2(23:16)							
0x26	SET_CNT_2(15:8)							
0x27	SET_CNT_2(7:0)							
0x28	REF_CNT_1(31:24)							
0x29	REF_CNT_1(23:16)							
0x2A	REF_CNT_1(15:8)							
0x2B	REF_CNT_1(7:0)							
0×2C	REF_CNT_2(31:24)							
0x2D	REF_CNT_2(23:16)							
0x2E	REF_CNT_2(15:8)							
0x2F	REF_CNT_2(7:0)							
General configuration								
0x30	SEL_ETK	VDA_VB	EN_SS	DIS_CAL	DIS_SPI2	DIS_SPI1	EN_SPI_WD	EN_UCM
EN_SPV_IRQ								
0x31	EN_CALIB	EN_CONF	EN_CT2	EN_CT1	EN_BIAS	EN_VDA	EN_VNB	EN_VB
Interrupt enable								
0x32	EN_IRQ_FLAG_REG(15:8)							
0x33	EN_IRQ_FLAG_REG(7:0)							
Secondary channel data								
0x34	DATA_1S(15:8)							
0x35	DATA_1S(7:0)							
0x36	DATA_2S(15:8)							
0x37	DATA_2S(7:0)							
Watchdog								
0x38	WATCHDOG(7:0)							
SPI_LOCK, software reset								
0x39	SPI_LOCK_RESET(7:0)							
Cold-junction temperature								
0x3A	TEMP_KSK(15:8)							
0x3B	TEMP_KSK(7:0)							
Chip temperature								
0x3C	CHIP_TEMP(7:0)							
Diagnostics measurements								
0x3D				EN_DIAG	DIAG_SEL_CH(3:0)			
0x3E	DIAG(13:6)							
0x3F	DIAG(5:0)							
Write EEPROM configuration								
0x40	WR_EEPROM_CONF(7:0)							

UNIVERSAL I/O INTERFACE

Rev A1, Page 44/55

REGISTER MAP								
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2C communikation								
0x41	$1^{2} \mathrm{C}$ _DEV_ADR(7:0)							
0x42	$I^{2} \mathrm{C}$ _PTR(7:0)							
0x43	$I^{2} \mathrm{C}$ _MODE(7:4)				$1^{2} \mathrm{C}$ _BYTES(3:0)			
0x44	$1^{2} \mathrm{C}$ _DATA_B1(7:0)							
0x45	$1^{2} \mathrm{C}$ _DATA_B2(7:0)							
0x46	$1^{2} \mathrm{C}$ _DATA_B3(7:0)							
0x47	$1^{2} \mathrm{C}$ _DATA_B4(7:0)							
ASIC revision \& identification								
0x48	REV(7:0)							
0x49	CHARGE(7:0)							
0x4A	WAFER(4:0)					CHIP(10:8)		
0x4B	CHIP(7:0)							
Secondary channel status register								
0x4E		CH_STAT_1S(6:0)						
0x4F		CH_STAT_2S(6:0)						
SPV_REG								
0x52	ST_CALIB	ST_CONF	ST_CT2	ST_CT1	ST_BIAS	ST_VDA	ST_VNB	ST_VB

Table 39: Register layout

REGISTER DESCRIPTION

Unless otherwise noted, a '1' activates and a '0' deactivates a function. Registers with the suffix _x refer to both channel 1 and 2. Their function is the same but the channels can be configured independently.

The right hand side of the register header contains the following values:
'L': Shows that the register can be locked, see register SPI_LOCK_RESET.
'K': Marks those configuration registers which values are read from the external EEPROM during start-up.
'P', 'S': Represent the primary or secondary mode. Some registers refer to both modes and carry both letters, others are independent of the modes and carry ' $/$ ' instead.
'R', 'W': Represents the access modes 'read' and 'write'.
'(*)': Represents the possibility of automatic configuration. Here, the iC autonomously selects the data content when required.

Finally, the default value that the register takes up after start-up is given. In configuration registers, this value is overwritten with the value of the EEPROM, if the register contains a configuration with a valid CRC value.

IO_SEL_xP, IO_SEL_xS, DO_ADR0_2

The primary and secondary mode for each channel can be selected via the registers IO_SEL_xP and IO_SEL_xS. For the secondary mode, digital voltage and current in- and outputs are available. For the primary mode, in addition, a counter that optionally can function as PWM generator and a temperature measurement is available. Chapter 'Mixed operation' shows possible combinations.

The exact function of the selected modes can be set by the relevant registers.

If the temperature measurement is selected in register IO_SEL_xP and the PT elements are selected in register TM_SEL_x , the register IO_SEL_xS is automatically overwritten with the selection $\overline{\mathrm{CO}}$ to provide the current required for the measurement.

Rev A1, Page 45/55

IO_SEL_xP		LK - P	RW - 011
000	DI - digital input		
001	DO - digital output		
010	VI - voltage input		
011	VO - voltage output		
100	CI - current input		
101	CO - current output		
110	CNT - counter, corresponds to DI when counting		
	and DO for PWM		
111	TM - temperature mesurement		

Table 40: Primary channel mode selection

IO_SEL_xS		LK - S	(*) RW - 000
000	DI - digital input		
001	DO - digital output		
010	VI - voltage input		
011	VO - voltage output		
100	CI - current input		
101	CO - current output		
110	CNT(PWM) - counter in PWM mode, corresponds to		
	DO; counter not supported		
111	OFF - NOP		

Table 41: Secondary channel mode selection

DO_12

The register DO_12 enables outputting a digital data signal for both channels. For control, any source of the first channel can be used. The output occurs simultaneously at both outputs. If the signals are output in phase (i.e. DIO_INV_1 = DIO_INV_2), the outputs can be connected in parallel and the maximum available current can thus be doubled. The antivalent operation for example is useful for differential mode generation via PWM.

DO_12		LK - P
1	Activates the output of a signal via DO_1 and DO_2	

Table 42: DO_12

DO_ADR0_2

Register DO_ADRO_2 enables outputting the input value at pin ADRO directly at the digital output pin IA2. The possibility for inversion remains.

Table 43: DO_ADR0_2

ENVIF_x

Register ENVIF_x enables the use of floating sensors when using the current and voltage input as well as
thermocouples. If this bit is set, the pin Ulx is switched to ground by means of a resistor.

ENVIF_x		LK-PS	RW - 0
1	Switches pin UI to ground - use with floating sensors		

Table 44: ENVIF_x

DI_SEL_x
Register DI_SEL_x allows selecting the digital input as type $1 / 2 / 3$ in accordance with the standard DIN/EN 61131-2.

DI_SEL_x		LK-PS	RW - 11
00	Pull-up		
01	Type 1		
10	Type 2		
11	Type 3		

Table 45: Digital input selection

DO_SEL_x

Register DO_SEL_x enables to select the mode for the digital output. In push-pull mode, either the P-channel or the N -channel transistor is active to pull the output actively to the appropriate level. In low-side mode, only the N -channel transistor and a small pull-down cur-rent-source for cable break detection are active. Correspondingly, in high-side mode, only the P-channel transistor and a small pull-up current are active.

DO_SEL_x		LK-PS	RW - 00
00	Push-pull		
01	IO-Link with push-pull		
10	Low-side driver		
11	High-side driver		

Table 46: Digital input/output selection

DIO_INV_x

The input and output signals can be inverted with the DIO_INV_x register. At the input, all modes are affected that use the digital input, i.e. also counters and the read--back of the physical line level. At the output, all modes are affected that use the digital output, i.e. the counter in PWM mode.

DIO_INV_x		LK-PS	RW - 0
0	OFF - input/output not inverted		
1	ON - input/output inverted		

Table 47: Digital input/output inversion

SYNC_SEL_x

According to table 48, both SYNC pins can be operated separately in the following modes. Note that for modes

Rev A1, Page 46/55
that use the digital input or output, those in- and outputs must also be selected in the IO_SEL_xX register either as primary or secondary function.

- OUT: The iC operates asynchronously. The input data is sampled with the falling edge at pin NCS (SPI access), the output data is set after writing (rising edge at NCS; the analog outputs are updated after the next refresh cycle).
- SYNC (DATA): The iC operates synchronously. The input data is sampled with the rising or falling edge of the SYNC pin and can be read via SPI at any time. The output data written via SPI is output then (the analog outputs are updated after the next refresh cycle).
- DIG_IN-SYNC_OUT: The digital input data is output via the SYNC pin after passing the spike filter and optional inversion. The mode of the digital input is selected via DI_SEL. The primary or secondary function for the channel must be selected as DI.
- SYNC_IN-DIG_OUT: The digital value at the SYNC pin is output (optionally inverted) at the digital output. The mode of the digital output is selected via DO_SEL. The primary or secondary function for the channel must be selected as DO.

SYNC_SEL_X			LK - 1
00	OFF	RW - 00	
01	SYNC (DATA)		
10	DI \rightarrow SYNC_PIN		
11	SYNC_PIN \rightarrow DO		

Table 48: SYNC pin function selection

SYNC_INV_x

The register SYNC_INV_x selects the active edge for synchronizing (for every channel separately). This applies both to the SYNC pin and the SYNC command via SPI.

SYNC_INV_X		LK - P
0	Non inverted: rising edge	
1	Inverted: falling edge	

Table 49: SYNC edge selection

VICI_SEL_x

Register VICI_SEL_x determines the function of the voltage input or the current input respectively. The setting must correspond to register IO_SEL_x.

When temperature measurement is selected in register IO_SEL_xP, it is automatically overwritten with the voltage range required for the measurement.

VICI_SEL_x		LK-PS	($\left.^{*}\right)$ RW -000
000	$\pm 10 \mathrm{~V}$		
001	$\pm 1 \mathrm{~V}$		
010	$\pm 100 \mathrm{mV}$		
011	$\pm 10 \mathrm{mV}$		
100	$-17.5 \mathrm{~m} \ldots 87.5 \mathrm{mV}$		
101	$-4.375 \ldots 21.875 \mathrm{mV}$		
110	$-20 \ldots 20 \mathrm{~mA}$		
111	$4 \ldots 20 \mathrm{~mA}$		

Table 50: Voltage/current input selection

CO_SEL_x
Register $\overline{\mathrm{C}} \mathrm{O}_{-}$SEL_x determines the function of the current output.

When temperature measurement is selected in register IO_SEL_xP and the PT elements are selected in register TM_SEL_x, this register is automatically overwritten with the selection appropriate for the PT elements to supply the required current.

CO_SEL_x		LK-PS	(*) RW - 00 *
00	$0 \ldots 20 \mathrm{~mA}$		
01	$4 \ldots 20 \mathrm{~mA}$		
10	$0 \ldots 2.0 \mathrm{~mA}$		
11	$0 \ldots 200 \mu \mathrm{~A}$		

Table 51: Current-output selection

VO_EC_x

Register VO_EC_x activates the extended current range of the voltage output (see Item No. M04).

VO_EC_x	LK-PS	($\left.^{*}\right) \mathrm{RW}-0$
1	Activates the extended current range of VO	

Table 52: Current-range extension

Classic counter

The following registers refer to the function of the counter in classic mode. This register block shares its functions with other modes. It is only valid, if the classic counter is selected in register IO_SEL_xP.

If required, register CNT_DCB_x suppresses several CH_STAT events in consequence of the same trigger. They can be reactivated in register SPI_LOCK_RESET. The bit is intended to reduce double interrupts due to a single event.

| CNT_DCB_x | LK - P | RW - 0 |
| :--- | :--- | :--- | :--- |
| 1 | Activates the suppression of multiple CH_STAT
 events | |

Table 53: EN_STAT_xP-bits reset

Rev A1, Page 47/55

Register CNT_RAR_x resets the counter when reaching the reference value. The reference value as such is not reached.

| CNT_RAR_x | LK -P | RW - 0 |
| :--- | :--- | :--- | ---: |
| 1 | Activates the counter reset when the reference value
 is reached | |

Table 54: Reset at reference

Register CNT_DNU_x enables switching the counting direction. This function is supported by the following modes:

- Single: Pulse counter
- Dual: Pulse counter with trigger
- Dual: Pulse counter with reset
- Dual: Pulse counter with gate

CNT_DNU_x		LK - P	RW - 0
0	up (where available)		
1	down (where available)		

Table 55: Counting direction

Register CNT_CBE_x is relevant for all counter modes that count pulses, both in single and dual mode. It enables selecting whether only one type of edge (rising or falling) or both are counted. In the first case, the edge is selected via register DIO_INV_x.

CNT_CBE_x		LK -P

Table 56: Edges

Register CNT_E2R_1 is implemented only for the first channel. The first counter can be compared with both reference values and the equality is indicated via the respective status bit. This is possible both in single and in dual mode. The possibility to prevent several interrupts via register CNT_DCB_1 remains for both comparisons separately.

This mode is not possible if the second counter is in PWM mode, since the reference register is required there. The second counter can be operated as a classic counter, with the restriction that its reference register can be used twice but can only have one value. The second channel can carry out every function without restriction.

CNT_E2R_1		LK - P	RW - 0
1	Additionally acativates the comparison of the first counter with a second reference value		

Table 57: Second reference

CNT_SEL_x in single-Mode			LK - P
000	Pulse counter	RW - 000	
001	Time measurement period		
010	Time measurement pulse width		
011	PWM (output)		

Table 58: Mode selection in single-mode

CNT_SEL_x in dual-mode	LK - P	RW -000
000	Pulse counter with trigger	
001	Pulse counter with reset	
010	Pulse counter with gate	
011	Pulse counter with direction signal	
100	Time-measurement edge between channel 1 and 2	
101	Incremental encoder single	
110	Incremental encoder dual	
111	Incremental encoder quadruple	

Table 59: Mode selection in dual-mode

| CNT_DUAL_1 | LK - P | RW - 0 |
| :--- | :--- | :--- | :--- |
| 1 | Activates the dual-mode: both inputs combined
 control one counter; to be configured for channel 1;
 both channels must be configured as counters | |

Table 60: Selection single-/dual-mode

Counter PWM

The following registers refer to the function of the counter in PWM mode. This register block shares its functions with other modes. It is only valid if the PWM counter is also selected in register IO_SEL_xP.

PWM_HS_x		LK - P	RW - 0
0	LOW-SPEED MODE, see Tab. 75		
1	HIGH-SPEED MODE, see Tab. 75		

Table 61: Selection low-speed/high-speed

Register PWM_AZP_x enables the activation pulse of the PWM. When switching on the PWM, a (usually) long activation pulse is generated before the PWM starts. An inversion at the input and output is still possible.

PWM_AZP_x		LK - P	RW - 0
1	PWM generates an activation pulse		

Table 62: PWM activation pulse

Rev A1, Page 48/55

The bit PWM_LAP_1 (only present in the first channel) is intended for operation of the PWM in antivalent mode. If it is active and a channel is inverted in active mode ($\mathrm{DO}=$ ' 1 '), both outputs operate in antivalent mode. In inactive mode, ($\mathrm{DO}=$ ' 0 ') both outputs are set to the same state depending on DIO_INV_1 and _2 either ' 0 ' or ' 1 '. The use of this bit requires the bit DO_12.

Table 63: PWM antivalent gating

TM_SEL_x

The following registers refer to the function of temperature measurement. This register block shares its functions with other modes. It is only valid if the temperature measurement is also selected in the IO_SEL_xP register.

The thermocouples do not require any further settings except the selection of the temperature measurement in register IO_SEL_x, i.e. the voltage measurement range
is selected automatically by the iC. The same applies to the PT-temperature sensors, whereas, additionally, the required current must be set as secondary function, i.e. both registers CO_SEL_x and DATA_xS. The current must be selected in such a way that the nominal value i.e. at $0^{\circ} \mathrm{C}$ results in a voltage of exactly 170 mV . Table 65 helps selecting appropriate output currents.

TM_SEL_x		LK - P	RW -00000
00000	Thermo-couple J		
00001	Thermo-couple K		
00010	Thermo-couple T		
00011	Thermo-couple N		
00100	Thermo-couple E		
00101	Thermo-couple R		
00110	Thermo-couple S		
00111	Thermo-couple B		
11000	PT sensor, 2-wire		
11001	PT sensor, 3-wire		
11010	PT sensor, 4-wire		

Table 64: Temperature measurement selection

PT-Element	CO_SEL_x	DATA_xS
PT100	0... $2 \mathrm{~mA} \mathrm{(10)}$	1.7 mA (0xCF3C)
PT200	0... 2 mA (10)	0.85 mA (0x67A0)
PT300	0... 2 mA (10)	$0.5667 \mathrm{~mA}(0 \times 4514)$
PT500	$0 . . .2 \mathrm{~mA} \mathrm{(10)}$	0.34 mA (0x2974)
PT1000	$0 . .200 \mu \mathrm{~A}$ (11)	$170 \mu \mathrm{~A}$ (0xCF3C)
PT2000	$0 . .200 \mu \mathrm{~A}$ (11)	$85 \mu \mathrm{~A}$ (0x67A0)
PT3000	$0 . .200 \mu \mathrm{~A}$ (11)	$56.67 \mu \mathrm{~A}$ (0x4514)
PT5000	$0 . . .200 \mu \mathrm{~A}$ (11)	$34 \mu \mathrm{~A}$ (0x2974)
PT9000	$0 . . .200 \mu \mathrm{~A}$ (11)	$18.89 \mu \mathrm{~A}$ (0x1708)

Table 65: PT current selection examples

EN_CH_STAT_xX

Register EN_CH_STAT_xX activates the bits of register CH_STAT_xX. Note that bits 2, 3, 4, 5, and 6 can only be activated en masse. This is relevant for the limit detection. This limit can easily be restricted to just exceeding or falling below by setting the appropriate limit value to the maximum or minimum of the range. Figure 7 shows the connection between the registers CH_STAT, SPV and IRQ_FLAG_REG.

CH_STAT_xX		LK-PS
bit0	activates relevant CH_STAT_xX, bit 0	
bit1	activates relevant CH_STAT_xX, bit 1	
bit2	activates relevant CH_STAT_xX, bits 2, 3	
bit3	activates relevant CH_STAT_xX, bits 4, 5, 6	

DIG_FIL_x

Via register DIG_FIL_x, the cut-off frequency of the digital filter can be set to filter the analog signals after the AD converter. The cut-off frequencies also depend on register FIL_HB_x.

Table 66: CH status

iC-GD

Rev A1, Page 49/55

Table 67: Digitale filter cut-off frequencies (rounded)

FIL_HB_x

Via register FIL_HB_x, the digital input filter for the analog signals can be switched into a faster mode with reduced latency but flatter amplitude response. This involves an internal deactivation of the half-band filters. See register 'DIG_FIL_x'.

FIL_HB		LK-PS	RW - 0
0	Steeper amplitude response with higher latency		
1	Flatter amplitude response with lower latency		

Table 68: FIL_HB_x

FIL_ITP_x

Via register FIL_ITP_x, the digital input filter for the analog signals can be switched into a faster mode with reduced latency but much lower sample rate. This involves a deactivation of the interpolation which results in about halving the latency.

FIL_ITP		LK-PS	RW - 0
0	Active interpolation with higher latency		
1	Deactive interpolation with lower latency		

Table 69: FIL_ITP_x

SPIKE_FIL_x

The digital spike filter can be set for every channel separately. It serves to filter the digital input for spurious pulses up to a configurable length.

The digital spike filter can be set via the 4-bit-wide register SPIKE_FIL_x in the range of 0 up to approx. 262 ms . To deactivate the filter, the time can be set to 0 . Internally, the filter operates with an 8-bit counter. If the input is 0 , the counter is counted down, if it is 1 , it is counted up. If the counter reaches 0 , the output is set to 0 . If the counter achieves its maximum value dependent on the filter width, it is set to 1 .

Table 70 summarizes the settings of SPIKE_FIL_x, the resulting filter time and in brackets the internal sample rate and filter width. The given times have an accuracy of ± 1 clock. This is equal to an accuracy e.g. at 8 MHz sampling of ± 125 ns.

SPIKE_FIL_x		LK-PS	RW-0x7
0x0	$0 \mu \mathrm{~s}$.	...	ike-filter off)
0x1	$16 \mu \mathrm{~s}$	bit counter)
0x2	$32 \mu \mathrm{~s}$...	bit counter)
0x3	$64 \mu \mathrm{~s}$		bit counter)
0x4	128 ¢		bit counter)
0x5	$256 \mu \mathrm{~s}$.	bit counter)
0x6	$512 \mu \mathrm{~s}$.	it counter)
0x7	1.024 ms	.	bit counter)
0x8	2.048 ms	. . (bit counter)
0x9	4.096 ms	. . ${ }^{6}$	bit counter)
0xA	8.192 ms	. 31	bit counter)
0xB	16.38 ms	. . 15	bit counter)
0xC	32.77 ms .	. . 7.81	bit counter)
0xD	65.54 ms	. . 3.90	bit counter)
0xE	131.1 ms .	. . 1.95	bit counter)
0xF	262.1 ms (0.97	bit counter)

Table 70: Spike-filtertime setting

AI_LOWER_x, AI_UPPER_x

Registers AI_LOWER_x and AI_UPPER_x describe the valid range in which the analog input should stay. If the detection in the EN_CH_STAT_xX register is activated, a status bit indicates when this range is left. The status bit remains set until the status register is read to ensure that temporarily leaving the range will also be detected.

Rev A1, Page 50/55

Al_LOWER_x	LK-PS	RW - 0×8000
bits 15:0	Lower limit (last valid value)	

Table 71: Lower limit

AI_UPPER_x	LK-PS	RW - 0x7FFF
bits 15:0	Upper limit (last valid value)	

Table 72: Upper limit

SPV_INT

Register SPV_INT monitors the internal status. In case of an error, the relevant bit is set to ' 1 ' and remains set until the register is read via SPI. The register is shown in figure 7. It is not linked to the others registers though.

SPV_INT		$/$	
ST_PLL	Status PLL		
ST_VBG	Status band-gap voltage VBG		
ST_VPA	Status internal supply voltage VDP		
ST_VPD	Status internal supply voltage VPD		

Table 73: Internal monitor bits status

SET_CNT_x

Register SET_CNT_x enables setting the particular counter to a specific value. Via the register communication, the register can be set both in single or continuous mode. When writing the last register byte, the written $16 / 32$-bit-wide word is taken as a whole. In regular counter modes, only setting the register as a whole is useful. In PWM mode or with activation pulse mode, either the entire register or only the lower half (bits 15:0) can be set. Except for this, a partial writing of the register is not possible. The meaning of the register depends on the selected mode (see chapter 'Counter').

SET_CNT_x		P	W - 0x00000000
bits 31:0	Counter value		

Table 74: Set counter

REF_CNT_x

Register REF_CNT_x enables setting the counter reference value. Via the register communication, the register can be set both in single and in continuous mode. When writing on the last register byte, the written $16 / 32$-bit-wide word is taken as a whole. It is possible to set the register as a whole (bits 31:0) or to set only the lower half (bits 15:0). In PWM mode, it is useful to set only the lower half (bits 15:0). Except for this, a partial writing of the register is not possible. The meaning of the register depends on the selected mode (see chapter 'Counter').

REF_CNT_x		P
Rits 31:0	Reference value	

Table 75: Set counter reference

Monitoring

The bits of the monitoring register signal errors of individual supply voltages and overtemperature. In case of an error, the relevant bit is set to ' 1 ' and remains set until the register is read out via the SPI. This enables to detect voltage dips that occurred temporarily.

SPV_REG		$/$	
ST_VB	Supply voltage VB		
ST_VNB	Supply voltage VNB		
ST_VDA	Supply voltage VDA		
ST_BIAS	Bias (RREF)		
ST_CT1	Chip temperature 1 (cf. Toff1)		
ST_CT2	Chip temperature 2 (cf. Toff2)		
ST_CONF	Configuration (CRC error)		
ST_CALIB	Configuration (CRC error)		

Table 76: Supervisory bits

EN_SPV_IRQ		LK - I	RW - 0x00
EN_VB	VB monitor activation		
EN_VNB	VNB monitor activation		
EN_VDA	VDA monitor activation		
EN_BIAS	Bias monitor activation		
EN_CT1	CT1 monitor activation		
EN_CT2	CT2 monitor activation		
EN_CONF	Configuration monitor activation		
EN_CALIB	Configuration monitor activation		

Table 77: Supervisory bits activation

EN_IRQ_FLAG_REG

The bits in register EN_IRQ_FLAG_REG activate the relevant bits in register IRQ_FLAG individually.

EN_IRQ_FLAG_REG		LK - /	RW - 0x0000
bit 15:0	Activates individual bits of register IRQ_FLAG_REG(15:0)		

Table 78: IRQ flag activation

DATA_xS

Registers DATA_xS contain data of the secondary channel. If the secondary channel operates as input, the current values of the secondary channel can be read. If the secondary channel operates as output, output data can be written to the register. The communication proceeds via the regular register communication in single or continuous mode.

iC-GD

UNIVERSAL I/O INTERFACE

Rev A1, Page 51/55

DIS_SPI_x		LK - P	RW - 0
0	Channel x active		
1	Channel x inactive		

Table 82: Disable SPI CH_x

DIS_CAL

When required, register DIS_CAL deactivates the calibration of the chip. This register is checked only when the chip starts up, therefore its state must be stored in the EEPROM.

DIS_CAL		LK-PS	RW - 0
0	Calibration active		
1	Calibration inactive		

Table 83: Disable channel calibration

EN_SS

When required, register EN_SS activates the spectrum spread of the internal oscillator.

EN_SS		LK - /	RW - 0
0	Spread spectrum inactive		
1	Spread spectrum active		

Table 84: Enable spread spectrum

VDA_VB

When the digital output is not used, register VDA_VB enables to omit the 24 V digital supply voltage. Instead, the analog voltage VB can be connected to the pin VDA. In this case this bit should be set to adapt the internal voltage monitoring accordingly.

VDA_VB		LK - /	RW - 0
0	VDA $=24 \mathrm{~V}$, digital output used		
1	VDA $=$ VB, digital output not used		

Table 85: VDA at VB

SEL_ETK

Register SEL_ETK selects the calibration values that are used for the TK compensation and chip-temperature calibration (ATK, AITK, and AOCT). These can either be taken from the internal chip, if they were specified in the chip production process, or they can be taken from the external EEPROM where they can be specified subsequently. Independent of their use, the values that are stored in the EEPROM are used for the calculation of the CRC value.

Rev A1, Page 52/55

SEL_ETK		LK - /
0	Internal calibration values are used	
1	External calibration values are used	

Table 86: SEL_ETK

SPI_LOCK_RESET

Register SPI_LOCK_RESET is not a classical register. It possesses multiple functions that can be activated by writing keywords: When writing $0 \times \mathrm{CA}$, a software reset is triggered - the chip restarts. When writing 0xA5, the SPI access for all registers is enabled in accordance with the register overview. Writing 0x00 (and further bytes) disables writing access of the SPI to the configuration registers marked with 'L'. After configuration, this helps to prevent accidental writing on the configuration registers in regular operation.

When writing $0 x C 5$, the counter enables a one-shot CH_STAT event (prevention of multiple interrupts at one event). This only affects the counter if the bit CNT_DCB is set.

Writing with 0xAA activates a special calibration mode where registers that are usually inaccessible are additionally unlocked. In this process, the usually active address translation is switched off so that some registers change their addresses. This function should only be activated during calibration and only according to the extent described in chapter 'Calibration'.

When reading, this register returns four bits of status information. These bits are reset by read access (RD+RST). The first status bit is set if an illegal read access occured. The second status bit is set if an illegal write access occured. This relates both to locked registers and the access of non-existing addresses.

Note that a prefetching proceeds in mode READ_REG_CONTINOUS. As a result, illegal read accesses that already occur internally may be indicated without being deliberately controlled by the SPI. The third status bit indicates the condition of the lock.
(*) The initial state of this 'register' depends on the validity of the configuration data. If a valid configuration is stored in the EEPROM, the SPI is locked after starting up the chip. If the configuration is invalid, the SPI is not locked.

Table 87: SPI lock/reset
(*) Unlocking refers to the following 4 states: overflow, underflow, REF_1 reached, REF_2 reached.

TEMP_KSK

Register TEMP_KSK contains the cold junction temperature that is necessary for the thermocouple measurement. The register can be written both in single and continuous mode. It accepts its value internally only when the writing process of the second half is completed so that a consistent value is processed. It can only be written to as a whole.

$\left.$| TEMP_KSK | | P |
| :--- | :--- | ---: | | RW - 0x0BA6 |
| ---: |
| $\left(\hat{=} 25^{\circ} \mathrm{C}\right)$ | \right\rvert\,

Table 88: Cold-position temperature

CHIP_TEMP

| CHIP_TEMP | $/$ | $\mathrm{R}-/$ |
| :--- | :--- | :--- | :--- |
| bits $7: 0$ | Chip temperature, $0 \times 00 \hat{=}-64^{\circ} \mathrm{C}, 1 \mathrm{LSB} \hat{=} 1^{\circ} \mathrm{C}$ | |

Table 89: Chip temperature

EN_DIAG

Register EN_DIAG activates the diagnostic measurement. The channel for analysis is selected via register DIAG_SEL_CH. The result is continuously updated in register DIAG_CH with an update frequency in accordance with the analog output. The first valid measurement value must be waited for accordingly.

EN_DIAG		/
1	Diagnostic modus active	

Table 90: Diagnostics channel selection

DIAG_SEL_CH

DIAG_SEL_CH		$/$	RW - 0000
0000	VB		
0001	VNB		
0010	VCC		
0011	VDA		
0100	VPA		
0101	VPD		
0110	VI		
0111	V020		
1000	V420		
1001	Channel 1: Digital output current		
1010	Channel 2: Digital output current		

Table 91: Diagnostics selection

| DIAG_CH | R | R-I |
| :--- | :--- | :--- | :--- |
| | see Tab. 12 | |

Table 92: Diagnostics channel

WR_EEPROM_CONF

Register WR_EEPROM_CONF stores the current configuration. After writing 0x96 to this register, the chip automatically writes the current configuration, i.e. all registers marked with ' K ', to the EEPROM. Subsequently, also the valid CRC checksum is written. When the writing process is completed, the register is set; 0 signifies error-free writing, 1 signifies an error. This register can be polled for the end of the writing process.

WR_EEPROM_CONF	L - I	RW - 0x00	
0×96 write	Starts write		
0×96 read	Write in progress		
0×00 read	Last write succesfull 0x01 read	Last write failed	

Table 93: Write configuration

$I^{2} C$

The chip contains an $I^{2} \mathrm{C}$ interface. An external EEPROM must be connected to it which contains the configuration and calibration data required for operation. Additionally, it enables accessing other chips in the form of a bridge between SPI and $\mathrm{I}^{2} \mathrm{C}$. For example temperature sensors with $\mathrm{I}^{2} \mathrm{C}$ interface can be controlled and their temperature data can be written via SPI on the registers of the cold junction compensation.

The currently valid configuration data can be transmitted automatically to the EEPROM via register WR_EEPROM_CONF. The calibration data must be written to the EEPPROM in bridge mode and the matching checksums must be transmitted.

In all cases, the chip operates as an $I^{2} \mathrm{C}$ master at up to $100 \mathrm{kbit} / \mathrm{s}$. The interface is not capable of multi-master operation. The 7-bit addressing mode is supported. Note that an EEPROM with a page size of at least 2 bytes is required for operation. When writing several bytes to EEPROM it must be additionally ensured that the page limit is not exceeded. More information can be found in the relevant datasheet.

The following registers are of importance to use the bridge:

- I2C_DEV_ADR: This register contains the address of the chips to be addressed, e.g. 0xA0 for EEPROMs
- I2C_PTR: This register operates as pointer. It addresses a particular register at the addressed chip.
- I2C_MODE: According to table 96, it can be selected between the modes RD; RD[PTR], and WR[PTR].
- I2C_BYTES: This register indicates the number of bytes that are to be read or written. Values between 1 and 4 are valid.
- I2C_DATA_Bx: During the writing process, the bytes stored here are written; during read process the bytes that are read are stored here.

Except for the data bytes, no $I^{2} \mathrm{C}$ register is changed during $I^{2} C$ communication. A valid setting can be maintained for an infinite time. If the registers are set correctly, the communication can be started via opcode $I^{2} \mathrm{C}$-TRANSFER. Opcode $I^{2} \mathrm{C}$ Status can be polled for its end. Note that after successful writing accesses, EEPROMs require time for the internal writing. Within this time-window it does not respond to requests. When writing, a waiting period in accordance with the EEPROM specification is to be maintained.

I2C_DEV_ADR	/	RW - undef		

Table 94: $\mathrm{I}^{2} \mathrm{C}$ device address

| I2C_PTR | $/$ | RW - undef |
| :--- | :--- | :--- | :--- |
| | Pointer to address the chip | |

Table 95: $I^{2} \mathrm{C}$ pointer

I2C_MODE		$/$	RW - undef
0×1	RD: Read from current address		
0×2	RD[PTR]: Write from [PTR]		
0×4	WR[PTR]: Read from [PTR]		

Table 96: ${ }^{2} \mathrm{C}$ mode

| I2C_DATA_Bx | $/$ | RW - undef |
| :--- | :--- | :--- | :--- |
| | Data bytes for $\mathrm{I}^{2} \mathrm{C}$ communikation | |

Table 97: ${ }^{2} \mathrm{C}$ data bytes

Rev A1, Page 54/55

Feedback opcode I^{2} C status	I	R - undef
0×00	Communication ended successful	
0×01	Communication running	
0×03	Communication failed	

| CHIP | I | R - |
| :--- | :--- | :--- | :--- |
| bits 10:0 | Chip number | |

Table 102: Chip number
Table 98: Opcode $\mathrm{I}^{2} \mathrm{C}$ status

Revision and identification

Register REV contains the hardware revision number of the iC, beginning with 1 . The registers LOT, WAFER and CHIP set up a unique identification number defined during chip production.

| REV | / | R - / |
| :--- | :--- | :--- | :--- |
| bits 7:0 | Hardware revision number | |

Table 99: Revision number

LOT		$/$	$\mathrm{R}-/$
bits 7:0	Lot number		

Table 100: Lot number

| WAFER | $/$ | $\mathrm{R}-/$ |
| :--- | :--- | :--- | :--- |
| bits $4: 0$ | Wafer number | |

Table 101: Wafer number

WATCHDOG

Register WATCHDOG provides information on the cause of the last reset. If all bits are 0 , the iC restarted because of a power-on reset. Otherwise, exactly one bit is set according to table 103. Details can be found in chapter 'Startup, Reset, Watchdogs, and EEPROM'.

WATCHDOG			$/$
bit 0	NRES pin		R - 0x0
bit 1	SW reset		
bit 2	SPI watchdog		
bit 3	μ P watchdog		

Table 103: Watchdog

CH_STAT_xS

Register CH_STAT_xS contains the status bits of the secondary channel. The meaning of the bits depends on the selected mode IO_SEL_xS. The meaning is identical with the meaning of the primary channel.

| CH_STAT_xS | S | R - 0000000 |
| :--- | :--- | :--- | ---: |
| bits 6:0 | see Tab. 31 to 37 | |

Table 104: Secondary channel status register

[^0]UNIVERSAL I/O INTERFACE

ORDERING INFORMATION

Type	Package	Order Designation
iC-GD	QFN38 $5 \mathrm{~mm} \times 7 \mathrm{~mm}$	iC-GD QFN38-5x7

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35-92 92-692
E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:
iC-Haus GmbH
Am Kuemmerling 18
D-55294 Bodenheim GERMANY

Tel.: +49 (0) 61 35-92 92-0
Fax: +49 (0) 61 35-92 92-192
Web: http://www.ichaus.com
E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners

[^0]: iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.com/infoletter and is automatically generated and shall be sent to registered users by email.
 Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.
 The data specified is intended solely for the purpose of product description and shall represent the usual quality of the product. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or in case of only minor impairment of usability.
 No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.
 iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.
 iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

 Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

