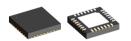
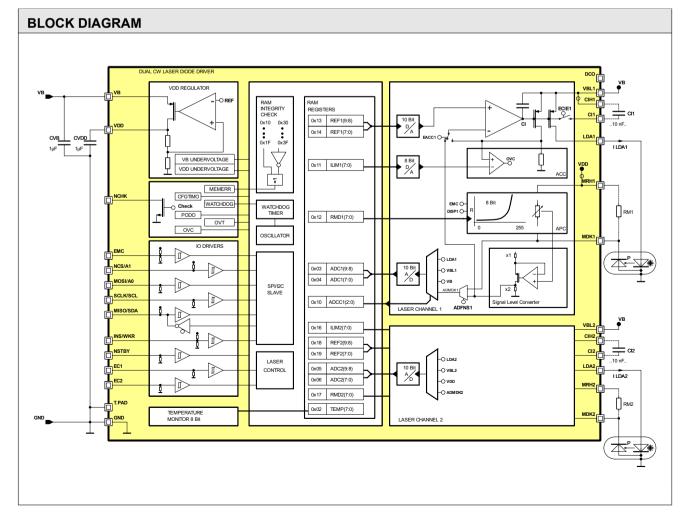


Rev A1, Page 1/46


FEATURES

- ♦ Dual channel CW operation with up to 750 mA per channel
- ♦ Up to 1500 mA with both channels combined
- ♦ 2.8 V to 11 V power supply
- ♦ Operation with or without µController
- ♦ Individual enable input per channel
- ♦ Individual laser power supply per channel
- ♦ Control loop accuracy better than 1%
- ♦ Internal programmable logarithmic monitor resistor
- ♦ Operating point setup with 10 bit logarithmic resolution
- ♦ ACC or APC mode individually configurable for each channel
- ♦ A/D converters for analog monitoring
- ♦ Serial programming interface (SPI or I²C compliant)
- ♦ Configuration content verification and validation
- ♦ Programmable laser overcurrent protection
- ♦ Optimized for P-type laser diodes
- ♦ Low drop linear regulator for 3.3 V
- ♦ Low current standby mode
- ♦ Temperature monitor
- Temperature range -40 ... 85 °C


APPLICATIONS

- ♦ Laser diode and LED modules
- ♦ CW P-type laser diode drivers
- ♦ Embedded laser diode controllers
- ♦ Structured-light 3D illuminations
- Multiple laser diode control
- Optical amplification/pumping
- ♦ Safety related laser controllers

PACKAGES

QFN28 5 mm x 5 mm

Copyright © 2015 iC-Haus http://www.ichaus.com

Rev A1, Page 2/46

DESCRIPTION

Dual CW laser diode driver iC-HTP can operate two individual laser diodes with up to 750 mA laser current depending on the heat dissipation. Each channel can be enabled independently. The laser diode driver can be controlled by an external microcontroller (MCU mode) or operate stand alone with pin/resistor configuration (iC-WK mode). In MCU mode, both channels can be combined for driving up to 1500 mA.

Each channel can be operated individually either in automatic current control (ACC) or automatic power control (APC). All parameters including the internal reference voltages are set via serial communication (I²C or SPI). A 10 bit resolution D/A converter with logarithmic characteristic is used for setting the operating point. This allows an operating point resolution better than 1%.

In APC control, the monitor diode photocurrent is used to track the optically emitted power of the laser diode. The feedback for the laser diode driver is the voltage of the photocurrent at a monitor resistor. An 8 bit internal programmable logarithmic monitor resistor (PLR) or an external monitor resistor can be selected for closing the control loop. The PLR ranges from 100Ω to $500 \,\mathrm{k}\Omega$ with a step width less than 5%.

In ACC control, the laser diode current can be set directly. Two current ranges are selectable.

iC-HTP allows disabling the laser channels when an overcurrent threshold has been exceeded. The overcurrent threshold of each channel has 2 ranges and is programmable through an 8 bit linear D/A converter.

The temperature monitor measures the internal chip temperature. iC-HTP disables the laser channels when overtemperature is detected.

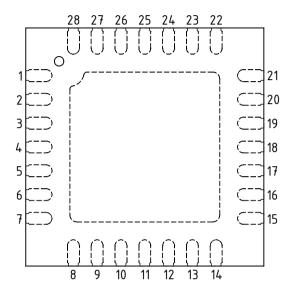
A variety of voltages can be measured with a 10 bit A/D converter. The following voltages can be measured:

- V(LDAx)
- V(VBLx)
- V(VDD)
- V(VB)
- V(ADMDKx)

The DCO current output pin can control an external DC/DC converter. Controlling the DC/DC output voltage can optimize the power dissipation of the whole system e.g. to extend battery life.

iC-HTP in standby mode has a very low current consumption (< 10 µA) and does retain its configuration.

The device features for safe operation:


- · Configuration verification
- · Tri-state configuration pins
- · Write protection in operating mode
- · Safe default/startup state

Rev A1, Page 3/46

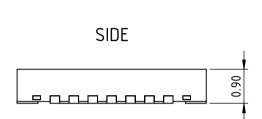
PACKAGING INFORMATION QFN28 5 mm x 5 mm to JEDEC

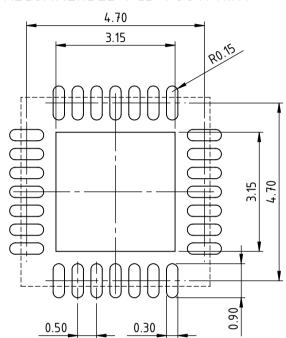
PIN CONFIGURATION QFN28 5 mm x 5 mm (topview)

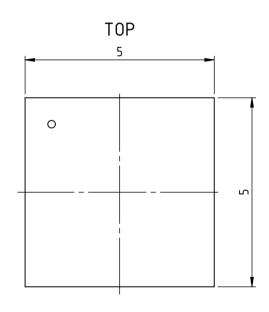
PIN FUNCTIONS

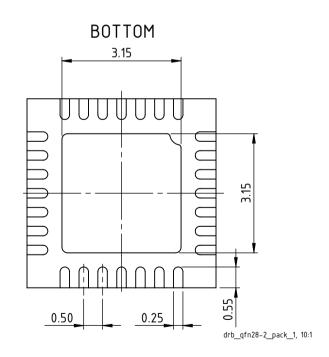
	Name	Function		
1	LDA1	Laser Diode Anode for channel 1 Laser Diode Anode for channel 1		
	LDA1 VBL1			
	CI1	Laser Power Supply for channel 1 Integration Capacitor for channel 1		
	CIH1	Integration Capacitor for channel 1,		
5	Cirri	high side		
6	MDK1	Monitor Diode Cathode for channel		
Ū	WEIGH	1		
7	MRH1	Monitor Resistor for channel 1, high side		
8	EMC	Enable Microcontroller input		
9	SCLK/SCL	SPI Clock / I ² C Clock		
10	MISO/SDA	SPI Master In Slave OUT / I ² C Data		
11	MOSI/A0	SPI Master Out Slave In / I ² C Address bit 0		
12	NCS/A1	Chip Select, active low / I ² C Ad-		
		dress bit 1		
13	EC1	Enable Channel 1 input		
14	EC2	Enable Channel 2 input		
15	MRH2	Monitor Resistor for channel 2, high		
		side		
16	MDK2	Monitor Diode Cathode for channel 2		
17	CIH2	Integration Capacitor for channel 2, high side		
18	CI2	Integration Capacitor for channel 2		
	VBL2	Laser Power Supply for channel 2		
20	LDA2	Laser Diode Anode for channel 2		
21	LDA2	Laser Diode Anode for channel 2		
	GND	Ground		
	DCO	Digital Current Output		
24	INS/WKR	I ² C or SPI selection input / Refer-		
		ence voltage selection in iC-WK		
		mode		
	VDD	3.3 V output supply		
	VB	Power supply		
	NCHK	Error output, active low		
	NSTBY	Standby input, active low		
TP		Thermal Pad (GND)		

The Thermal Pad is to be connected to a Ground Plane (GND, AGND1...2) on the PCB. Only pin 1 marking on top or bottom defines the package orientation (@ HTP label and coding is subject to change).


Rev A1, Page 4/46


PACKAGE DIMENSIONS QFN28-5x5


All dimensions given in mm.


This package falls within JEDEC MO-220-VHHD-1.

RECOMMENDED PCB-FOOTPRINT

Rev A1, Page 5/46

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply permissible operating conditions; functional operation is not guaranteed. Exceeding these ratings may damage the device.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	VB	Voltage at VB		-0.3	11	V
G002	I(VB)	Current in VB		-20	50	mA
G003	VDD	Voltage at VDD		-0.3	5.5	V
G004	I(VDD)	Current in VDD		-20	1	mA
G005	V()	Voltage at EC1, EC2, MDK1, MDK2, EMC, SCLK/SCL, MISO/SDA, MOSI/A0, NCS/A1, DCO, INS/WKR, NCHK		-0.3	5.5	V
G006	I()	Current in CI1, CI2, CIH1, CIH2, EC1, EC2, MDK1, MDK2, EMC, SCLK/SCL, MISO/SDA, MOSI/A0, NCS/A1, DCO, INS/WKR, NCHK, NSTBY, CIL1, CIL2, MRH1, MRH2		-20	20	mA
G007	V()	Voltage at CI1, CI2, CIH1, CIH2, VBL1, VBL2, LDA1, LDA2, NSTBY		-0.3	11	V
G008	I(AGND)	Current in VBL1, VBL2	DC current	-1	900	mA
G009	I(LDK)	Current in LDA1, LDA2	DC current	-900	20	mA
G010	Vd()	ESD Susceptibility at all pins	HBM 100 pF discharged through 1.5 kΩ		2	kV
G011	Tj	Operating Junction Temperature		-40	125	°C
G012	Ts	Storage Temperature Range		-40	150	°C

THERMAL DATA

Operating Conditions: VB = 2.8 ... 11 V (referenced to GND)

Item	tem Symbol Parameter Conditions					Unit	
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range		-40		85	°C
T02	Rthja	Thermal Resistance Chip/Ambient	Mounted on PCB		25		K/W
T03	RthjTP	Thermal Resistance Chip/Thermal Pad			4		K/W

Rev A1, Page 6/46

ELECTRICAL CHARACTERISTICS

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	Device			IVIIII.	Typ.	IVIAX.	
		parameters beyond the operating	conditions (with reference to independent voltage	ae supplie	es. for in	stance) a	re to be
		ndividual application using FMEA n		3pp			
001	VB	Permissible Supply Voltage	Referenced to GND	2.8		11	V
002	I(VB)	Standby Current at VB	V(NSTBY) ≤ 0.4 V			10	μA
003	I(VB)	Supply Current at VB	No load, EC1, EC2, NSTBY = hi			5	mA
004	V(VB)on	Turn-on threshold	Increasing VB	1.9		2.7	V
005	V(VB)off	Turn-off threshold	Decreasing VB	1.8		2.6	V
006	V(VB)Hys	Power-on hysteresis		20		250	mV
007	V(VDD)on	Turn-on threshold	Increasing VDD	1.7		2.4	V
800	V(VDD)off	Turn-off threshold	Decreasing VDD	1.6		2.3	V
009	V(VDD)Hys	Power-on hysteresis		20		250	mV
010	V(VB)INITR	RAM memory reset during Stand-By	NSTBY = Io	0.85		1.4	V
011	Rgnd()	Resistor to VDD at MRH1, MRH2				20	Ω
012		Resistor to VBLx at CIHx				20	Ω
013	Vc()lo	Clamp Voltage Io at VB, VDD, NCHK, EMC, NCS/A1, MISO/SDA, MOSI/A0, SCLK/SCL, INS/WKR, NSTBY, EC1, EC2, DCO, LDA1, LDA2, CI1, CIH1, CI2, CIH2, AGND1, AGND2, MDK1, MDK2	I() = -10 mA	-1.6		-0.3	V
Laser		k, Clx, MDKx					
101		Saturation Voltage lo at LDA	CRNGx = 00 I(LDAx) = -750 mA V()= V(VBLx) - V(LDAx)			0.7	V
102	V(LDASAT)	LDAx saturation detection threshold	RLDASx = 00 RLDASx = 01 RLDASx = 10 RLDASx = 11	0.35 0.55 0.85 1.05	0.5 0.7 1 1.2	0.65 0.85 1.15 1.35	V V V
103	Idc(LDA)	Permissible DC Current at LDAx	CRNGx = 00 CRNGx = 01 CRNGx = 10 CRNGx = 11	-750 -100 -25 -9			mA mA mA
104	lleak(LDA)	LDAx leakage current	V(LDAx) = 0 V	-10			μA
105	` '	Possible capacitor at CI1, CI2	ECIE = 0, EMC = hi	0			μF
106	I(CI)	Charge Current at CI1, CI2	V(CI) = 0 V, EC1, EC2 = hi, ECIEx = 1 COMP = 111	-220		-30	μA
107	I(LDA)max	Laser overcurrent shutdown threshold	CRNGx = 00 EACCx = 0 V(LDA) = V(VBLx)-0.7 V 1.5 V ILIMx(7:0) = 0x00, RACCx = 0 ILIMx(7:0) = 0xFF, RACCx = 0 ILIMx(7:0) = 0x00, RACCx = 1 ILIMx(7:0) = 0xFF, RACCx = 1	-25 -2266 -3.2 -284		0 -900 0 -150	mA mA mA
108	△ I(LDA)	Shutdown threshold resolution	CRNGx=00 RACCx=0	-5	-4	-3	mA
			RACCx = 1	-0.625	-0.5	-0.375	mA
109	tovc	Time to overcurrent shutdown	Laser current decreased 10%	1		5	μs
110	V(MDK)	Voltage at MDK1, MDK2	Closed control loop EC1, EC2 = hi EMC = lo, INS/WKR = lo EMC = lo, INS/WKR = hi	225 455	250 500	275 545	mV mV
111	Ten	Time to laser enabled	NSTBY Io \rightarrow hi, no load at VDD, V(VDD) 0 to 90 %, CVDD = 1 μ F, EMC = Io			1.3	ms

Rev A1, Page 7/46

ELECTRICAL CHARACTERISTICS

Operating Conditions: VB = $2.8 \dots 11 \text{ V}$ (referenced to GND), Tj = $-40 \dots 125 \,^{\circ}\text{C}$ unless otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
112	Tci	Time to light	NSTBY = hi, ECIE = 0, COMP = 010,		31	300	μs
440	T-:-	Time to toward limbs	light off to 80 % target value			4700	
113	Tcio Idc(LDA)	Time to target light LDAx ACC mode current	Light from 80 % to 99 % target value CRNGx = 00 EC1, EC2, EMC = hi, EACCx = 1, V(LDAx) = V(VBLx)-0.7 V 1.5 V REFx(9:0) = 0x000, RACCx = 0	-205	-125	4700 -76	μs mA
			REFx(9:0) = 0x3FF, RACCx = 0 REFx(9:0) = 0x000, RACCx = 1 REFx(9:0) = 0x3FF, RACCx = 1	-2266 -25 -284	-1382 -15 -173	-850 -9 -105	mA mA mA
Progr	ammable Re	esistor	I .			I.	
201	Rmdk	Resistor at MDKx pin	RMDx(7:0) = 0xF0 0xFF, DISPx = 0 RMDx(7:0) = 0x00 0x0F, DISPx = 0	350 0.154	500 0.220	650 0.286	kΩ kΩ
202	Tk	Temperature coefficient		-1500	-500	0	ppm/K
203	ΔR	Percental resistor increment	$\Delta R = \frac{R(n+1) - R(n)}{R(n)}$	1	3.3	7	%
204	lleak(MDK)	MDKx leakage current	DISPx = 1	-1		1	μA
	onverter	<u> </u>	1	II	ı	1	
301	R(DAC)	D/A converter resolution				10	bit
302	ΔV	Percental voltage increments	$\Delta V = \frac{V(n+1) - V(n)}{V(n)}$	0.05	0.235	1	%
303	V(DAC)	D/A converter	REFx(9:0) = 0x000 lowest value REFx(9:0) = 0x3FF highest value	0.09	0.10 1.10	0.12 1.25	V
Check	Output NC	HK				l	
401	Vs()lo	Saturation Voltage Io at NCHK	I(NCHK) = 1.0 mA			0.4	V
402	lsc()lo	Short Circuit Current lo at NCHK	V(NCHK) = 0.4 3.3 V	9		33	mA
403	llk()	Leakage Current at NCHK	NCHK = 1; V(NCHK) = 05.5 V	-10		10	μA
Series	Regulator	Output VDD	1				
501	V(VDD)	Regulated output voltage	VB = 3.7 8 V, I(VDD) = -10 0 mA NSTBY = hi	3		3.5	V
502	V(VB,VDD)	Voltage Drop between VB and VDD	VDD unregulated, I(VDD) = -10 0 mA NSTBY = hi		100	400	mV
503	C(VOUT)	Capacitor at VDD	$Ri(C) < 1 \Omega$	1		3.3	μF
504	Tvdd	Settling time VDD	NSTBY Io \rightarrow hi, no load at VDD, V(VDD) 0 to 90 % CVDD = 1 μ F			1	ms
Digita	l inputs						
601	Vt()hi	Input Threshold Voltage hi at EMC, NCS/A1, MISO/SDA, MOSI/A0, SCLK/SCL, INS/WKR, NSTBY, EC1, EC2				2	V
602	Vt()lo	Input Threshold Voltage lo at EMC, NCS/A1, MISO/SDA, MOSI/A0, SCLK/SCL, INS/WKR, NSTBY, EC1, EC2		0.7			V
603	Vt()hys	Hysteresis at EMC, NCS/A1, MISO/SDA, MOSI/A0, SCLK/SCL, INS/WKR, NSTBY, EC1, EC2	Vt()hys = Vt()hi - Vt()lo	100			mV
604	lpd()	Pull-Down Current at MOSI/A0, EC1, EC2	V() = 0.4 V VDD	1		50	μA
605	lpd()	Pull-Down Current at NSTBY	V() = 0.4 V VB	1		50	μA
606	Rpu()	Pull-Up Resistor at SCLK/SCL, NCS/A1		80	150	260	kΩ
607	Rpu()	Pull-Up Resistor at MISO/SDA	EMC = hi, INS/WKR = lo EMC = hi, INS/WKR = hi	8 53	20 100	50 174	kΩ kΩ

Rev A1, Page 8/46

ELECTRICAL CHARACTERISTICS

Operating Conditions: VB = 2.8 ... 11 V (referenced to GND), Tj = -40 ... 125 °C unless otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
608	Er()	Safe enable threshold voltage at EMC, INS/WKR	Rising Falling	52 30	54 32	56 34	% VDD % VDD
609	Voc()	Open Circuit Voltage at EMC, INS/WKR		39	41	43	% VDD
610	Ri()	Internal Resistance at EMC, INS/WKR		170	250	330	kΩ
611	lsc()lo	Short Circuit current lo at MISO/SDA	INS/WKR = Io, V(MISO/SDA) = 5.5 V	-40		-4	mA
612	Vs()lo	Saturation Voltage lo at MISO/SDA	INS/WKR = Io, I(MISO/SDA) = 2 mA			0.4	V
A/D C	onverter		,			,	U
701	Ton	Converter initialization time	ADCCx(2) changes from 0 to 1 LDAx, VDD or VB measurements			500	μs
702	Tconv	Conversion time				140	μs
703	R(ADC)	A/D Converter Resolution				10	bit
704	RAC	Relative Accuracy		-1		+1	LSB
705	VZS()	Zero Scale Voltage	ADCx(9:0) = 000h		0		V
706	VFS()	Full Scale Voltage	ADCx(9:0) = 3FFh	1.0	1.1	1.2	V
707	MDKM	MDKx Measurement	MDKx = 0.5 V, ADCCx(2:0) = 100, ADFNSx = 1	372	465	558	LSB
708	VDDM	VDD Measurement	VDD = 3.3 V, ADCC2(2:0) = 101	312	390	468	LSB
709	VBM	VB Measurement	VB = 11 V, ADCC1(2:0) = 101	744	930	1023	LSB
710	VBLM	VBLx Measurement	VBLx = 11 V, ADCCx(2:0) = 110	744	930	1023	LSB
711	LDAM	LDAx Measurement	LDAx = 11 V, ADCCx(2:0) = 111	744	930	1023	LSB
Overt	emperature	•	1				1
B01	Toff	Overtemperature Shutdown	Rising temperature	130		170	°C
B02	Ton	Overtemperature Release	Falling temperature	120		160	°C
B03	Thys	Hysteresis	Toff — Ton	3			°C
Temp	erature Mo	nitor		II.			11
C01	Trange	Temperature Measurement Range		-40		125	°C
C02	Tresol	Temperature Measurement Resolution			1		°C
C03	Reading	Temperature Value Ranges	Tj = 125 °C Tj = -40 °C	160 0		190 15	digits digits
DCO (Output						
D01	lsc()hi	DCO Output Current	V(VDD) = 33.5 V, V(DCO) < 1.4 V, RDCO = 0x3F	-175	-130	-85	μА
D02	lleak	Leakage Current at DCO	RDCO = 0x00 or NSTBY = Io, V(DCO) = 0 5.5 V	-1		1	μA
D03	I(DCO)LSE	I(DCO) Resolution	V(DCO) < 1.4 V	1.3	2	2.7	μA
Oscill	ator	•					
E01	Fosc	Oscillator Frequency	NSTBY = hi	100	200	400	kHz
E02	T(cfgtimo)	Configuration Mode Timeout	MODE(1:0) = 10	40	82	164	ms
E03	tWDT	Watchdog Timeout	NSTBY = hi	20		120	μs

Rev A1, Page 9/46

OPERATING REQUIREMENTS: SPI and I²C Interface

Operating Conditions: $VB = 2.8 \dots 11 \text{ V}$, $Tj = -40 \dots 125 \text{ °C}$

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
SPI / I ²	C Interface	Timing				
1001	tsCCL	Setup Time: NCS/A1 hi $ ightarrow$ lo before SCLK lo $ ightarrow$ hi	INS/WKR = Io	20		ns
1002	tsDCL	Setup Time: MOSI/A0 stable before SCLK/SCL lo \rightarrow hi	INS/WKR = Io	20		ns
1003	thDCL	Hold Time: MOSI/A0 stable after SCLK/SCL lo \rightarrow hi	INS/WKR = Io	20		ns
1004	tCLh	Signal Duration SCLK/SCL hi	INS/WKR = Io	50		ns
1005	tCLI	Signal Duration SCLK/SCL lo	INS/WKR = Io	50		ns
1006	thCLC	Hold Time: NCS/A1 lo after SCLK/SCL hi \rightarrow lo	INS/WKR = Io	20		ns
1007	tCSh	Signal Duration NCS/A1 hi	INS/WKR = Io	50		ns
1008	tpCLD	Propagation Delay: MISO/SDA stable after SCLK/SCL hi \rightarrow lo	INS/WKR = Io, V(VDD) > 3 V, C _{load} = 10 pF, no external pull-up	0	30	ns
1009	tHIZ	MISO to HIZ delay	INS/WKR = Io	0	25	ns
1010	f(SCLK)	SPI clock frequency			10	MHz
I011	f(SCL)	I ² C clock frequency			400	kHz

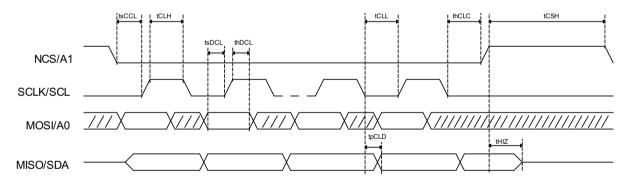


Figure 1: SPI interface timing

Rev A1, Page 10/46

OPERATING AND STANDBY MODES

iC-HTP has two operating modes:

iC-WK mode

iC-HTP operates as an Automatic Power Control (APC) laser controller, similar to iC-Haus iC-WKP. iC-WKP mode is set by pin configuration and external resistor. Pin EMC is set to lo and pin INS/WKR selects the reference voltage. Floating pins EMC and INS/WKR are detected as faulty configuration and signaled at NCHK.

MCU mode

In microcontroller unit (MCU) mode, iC-HTP features two control modes: automatic power control (APC) and automatic current control (ACC). Pin EMC is set to hi and pin INS/WKR selects the serial communication interface protocol. Selection of the communication protocol is achieved through pin INS/WKR: INS/WKR = hi for I2C, INS/WKR = Io for SPI. Floating pins EMC

and INS/WKR are detected as faulty configuration and signaled at NCHK.

Standby Mode

iC-HTP in standby mode has a very low current consumption (<10 µA) and does retain its configuration. Standby mode will not reset the internal RAM.

In order to exit standby mode, pin NSTBY must be set to hi (e.g. VB). VDD is switched off in standby mode and can not be used to exit standby mode.

CIx, CIHx, VB, VBLx, NSTBY and LDAx withstand voltages up to 11 V, whereas the remaining input pins operate up to 5.5 V and do have high impedance at standby mode.

Information on timing after waking up from standby mode can be found on page 37.

LASER DIODE/LED TYPES AND OPERATION MODES

For APC operation a monitor diode is required. This operation is possible in microcontroller unit (MCU) mode and in the iC-WK mode.

iC-HTP can operate in APC one type of laser diodes/LEDs with monitor diodes:

P-Type laser diodes

In automatic current control (ACC) operation there is no monitor diode and any diode can be operated in microcontroller unit (MCU) mode.

All operations are possible with laser diodes (LDs) or light emitting diodes (LEDs). In the following text we do not differ between laser diodes (LDs) and light emitting diodes (LEDs).

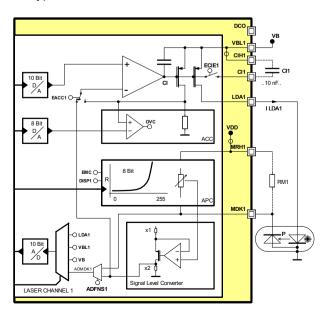


Figure 2: iC-HTP with P-type laser diode

Rev A1, Page 11/46

iC-WK MODE

Setting pin EMC = lo configures iC-HTP for iC-WK mode. EMC pin must be set using a pull-down resistor or directly short-circuited to GND pin.

In iC-WK mode both channels operate in APC mode. The internal programmable logarithmic monitor resistors are disabled, therefore connection of external resistors at pins MDKx is required.

The APC reference can be set to two different values by means of pin INS/WKR, as it is explained in table 5, and the overcurrent threshold is set to its maximum value of 750 mA (cf. Electrical Characteristics No. 107). In case of overcurrent, the respective channel is disabled. For re-enabling the channel, the corresponding ECx pin must be set lo and then back hi.

Reference Voltage in iC-WK mode				
INS/WKR	Reference Voltage	similar to		
Lo	VDD-0.25 V	_		
Hi	VDD-0.5 V	_		

Table 5: Reference selection (cf. Electrical Characteristics No. 110)

External CI capacitors must be added in this operation mode at pins CIx and CIHx. Figure 3 shows an example in iC-WK mode using an P-type laser diode, where VDD-0.5 V reference is selected. Figure 4 presents the same configuration with an P-type laser diode and reference VDD-0.25 V.

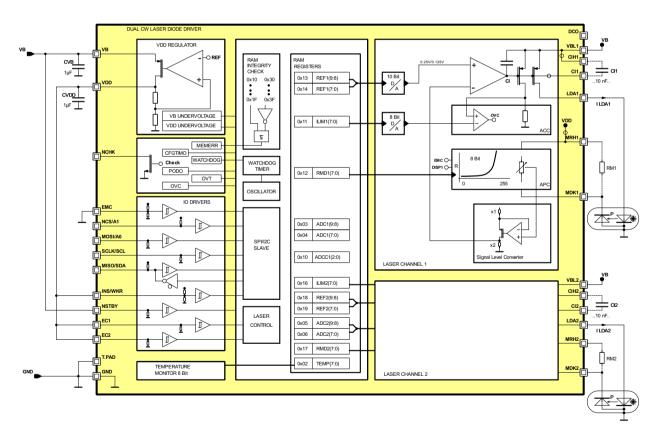


Figure 3: iC-HTP in iC-WK mode with P-type laser diode and reference VDD-0.5V

Rev A1, Page 12/46

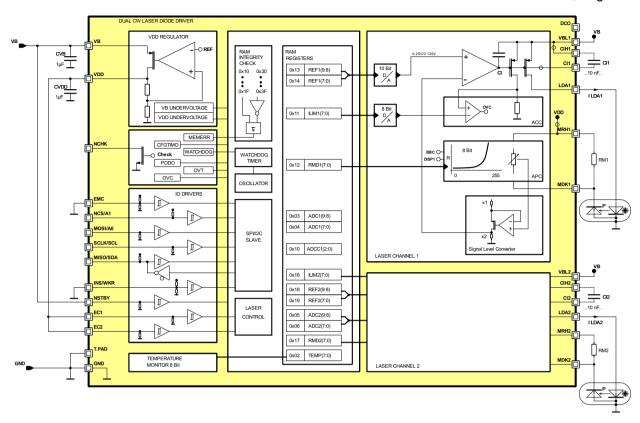


Figure 4: iC-HTP in iC-WK mode with P-type laser diode and reference VDD-0.25V

In the configuration from figures 3 and 4 pin NSTBY is connected to VB. This is required to force iC-HTP leaving standby mode and starting normal operation, as the pin includes an internal pull-down resistor.

Laser channel enabling

Setting pins EC1, EC2 to hi enables the corresponding channels. In order to ensure safe operation of iC-HTP, several events automatically disable both output channels:

- · Pins INS/WKR or EMC left unconnected (IN-SOPEN, EMCOPEN), iC-HTP enters error mode and the laser channels cannot be enabled.
- · Supply power-down either at VB (PDOVBLx) or VDD (PDOVDD), the laser channels are unconditionally disabled during the power down event.
- Overcurrent (OVC) or overtemperature (OVT). laser channels are switched off. Cycling pins EC1, EC2 or a power-up is required to switch on the laser again.

Rev A1, Page 13/46

MICROCONTROLLER MODE

Setting pin EMC to hi configures iC-HTP for microcontroller mode (MCU mode). EMC pin must be set using a pull-up resistor or directly short-circuited to VDD pin. Several parameters can be configured through a microcontroller via I²C or SPI communication. More information about the serial communication interface can be found on page 23.

The configuration of the internal parameters of iC-HTP must be done in configuration mode. In this mode, the configuration memory can be written and read back without changing the previous configuration state of iC-HTP. Once the configuration is considered as valid, iC-HTP can be switched to operation mode. These two modes are configured by the MODE register. The time elapsed in configuration must not exceed 40 ms. If this timeout is exceeded, both channels will be switched off. More information on page 35.

Each individual channel can be enabled by setting pin ECx to hi. Setting register bits DISCx to 1 disables the corresponding channel. If either pin ECx is lo or register bits DISCx is 1, the corresponding channel is disabled.

DISC1	Addr. 0x10; bit 3	R/W 1
0	Channel 1 can be enabled by pin EC1	
1	Channel 1 cannot be enabled by pin EC1	

Table 6: Disable channel 1

DISC2	Addr. 0x15; bit 3	R/W 1
0	Channel 2 can be enabled by pin EC2	
1	Channel 2 cannot be enabled by pin EC2	

Table 7: Disable channel 2

Different voltages can be measured using a 10 bit A/D converter with two resolutions. The following internal voltages can be measured:

- V(LDAx) up to 11 V with 11.81 mV resolution
- V(VDD) up to 8 V with 8.6 mV resolution
- V(VB) up to 11 V with 11.81 mV resolution
- V(VBLx) up to 11 V with 11.81 mV resolution
- V(MDKx) up to 1.1 V with 1.075 mV resolution
- V(PLRx) up to 1.1 V with 1.075 mV resolution

The register bits ADCCx select the signal measured with the 10 bit A/D converter.

ADCC1(2:0)	Addr. 0x10; bit 7:5	R/W 000
0xx	Disabled	
100	V(PLR1), ADFNS1 = 0	
100	V(MDK1), ADFNS1 = 1	
101	V(VB)	
110	V(VBL1)	
111	V(LDA1)	

Table 8: ADC channel 1 source selection

ADCC2(2:0)	Addr. 0x15; bit 7:5 R/W	000
0xx	Disabled	
100	V(PLR2), ADFNS2 = 0	
100	V(MDK2), ADFNS2 = 1	
101	V(VDD)	
110	V(VBL2)	
111	V(LDA2)	

Table 9: ADC channel 2 source selection

With ADCCx(2:0) = 100, the signal to the A/D converter is selected by register bit ADFNSx. With ADFNSx = 0 the measuring point to the A/D converter is the internal sense node of the internal programmable logarithmic monitor resistor (PLR). With ADFNSx = 1 the sensing point is connected directly to MDKx pin. Note that in this case, only voltages from 0 to 1.1 V can be monitored for the A/D converter.

ADFNS1	Addr. 0x1A; bit 2	R/W 0
0	ADC measurement pin PLR1 (sense)	
1	ADC measurement MDK1 (force)	

Table 10: ADC channel 1 sense/force selection

ADFNS2	Addr. 0x1A; bit 6	R/W 0
0	ADC measurement pin PLR2 (sense)	
1	ADC measurement MDK2 (force)	

Table 11: ADC channel 2 sense/force selection

Rev A1, Page 14/46

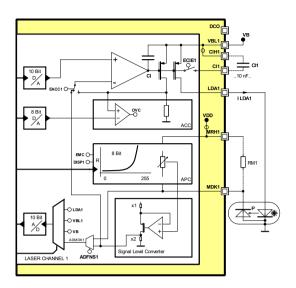


Figure 5: Channel 1 schematic

Two different control modes can be configured independent for each channel: automatic power control (APC) and automatic current control (ACC). In both modes a 10 bit logarithmic D/A converter sets the reference voltage and an 8 bit programmable D/A converter configures the overcurrent threshold.

APC mode

In APC mode the laser power is controlled. The monitor diode current is used as feedback in the laser power control loop. APC mode is selected by setting EACCx register bit to 0.

EACC1	Addr. 0x10; bit 0	R/W 0
0	APC mode enabled for channel 1	
1	ACC mode enabled for channel 1	

Table 12: APC/ACC in channel 1

EACC2	Addr. 0x15; bit 0	R/W 0
0	APC mode enabled for channel 2	
1	ACC mode enabled for channel 2	

Table 13: APC/ACC in channel 2

An example of APC with default configuration is shown in figure 6.

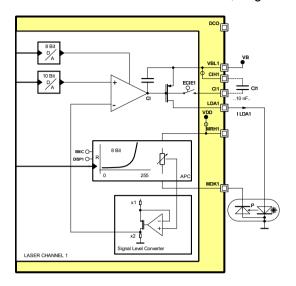


Figure 6: APC mode simplified

An internal 8 bit programmable logarithmic monitor resistor (PLR) can be used in APC mode. In APC mode it is also possible to use an external monitor resistor connected to pin MDKx. If the register bit DISPx is 0, the PLR is present. If DISPx is 1, the PLR is disabled and an external monitor resistor must be used.

DISP1	Addr. 0x10; bit 2	R/W 0
0	PLR enabled for channel 1	
1	PLR disabled for channel 1	

Table 14: Disable PLR channel 1

DISP2	Addr. 0x15; bit 2	R/W 0
0	PLR enabled for channel 2	
1	PLR disabled for channel 2	

Table 15: Disable PLR channel 2

Both programmable logarithmic monitor resistors (PLR) feature a wide logarithmic resistor range from 100Ω to 500 k Ω , in steps of typically 3.3%. This covers a wide range of monitor currents. More information about the PLR can be found on page 25.

For fine-tuning the optical power, the reference voltage can be set with a 10 bit logarithmic D/A converter, which is configurable through register REFx. This converter has a voltage range that goes typically from 0.1 V to 1.1 V, allowing an operation resolution of typically 0.235%. More information on the logarithmic D/A converter can be found on page 26.

Inside the regulation loop there is the signal level converter. This block is in charge to convert the values coming from the PLRx which are referenced to MRHx and reference them to GND. This is necessary because

Rev A1, Page 15/46

the logarithmic D/A is referenced to GND. In addition this signal level converter adds a 1:2 ratio between the voltage regulated at PLRx and the one regulated at the logarithmic D/A converter i.e. 1.1 V regulated at the logarithmic D/A side are 0.55 V regulated at the PLRx side.

For calculating the minimum value of Imon, Vref(0x00, max value) (cf. Electrical Characteristics No. 303) and Rmda(RMDx = 0xFF, min value) (cf. Electrical Characteristics No. 201) are used. Also the 1:2 ratio between PLRx regulation voltage and Vref must be applied.

$$Imon(min) = \frac{\frac{Vref(0x000,max)}{2}}{Rmda(RMDx = 0xFF,min)} = \frac{\frac{0.11}{2}}{350000} = 0.16 \, uA$$

It is not recommended to configure iC-HTP to have such small Imon values, otherwise the leakage current at MDKx may have an influence (cf. Electrical Characteristics No. 204), especially at high temperatures. To avoid this, Imon should be much greater than the leakage current.

For calculating the maximum value of Imon, Vref(0x3FF, min value) (cf. Electrical Characteristics No. 303) and Rmda(RMDx = 0x00, max vaule) (cf. Electrical Characteristics No. 201) are used. Also the 1:2 ratio between PLRx regulation voltage and Vref must be applied. Since only the 4 MSB from PLR can be accessed at pin MDKx, the following formula needs to be used for calculating Rmda(RMDx = 0x00, max value):

$$Rmd = Rmd_0(1 + \frac{\Delta Rmd(\%)}{100})^{n+1}$$
, n from 0 to 255

$$Rmda(RMDx = 0x00, max) = Rmd_0(1 + \frac{\Delta Rmd(\%)}{100})^{16}$$

$$286 = Rmd_0(1 + \frac{3.3}{100})^{16}$$

 $Rmd_0 = 170\Omega$

Therefore:

$$Imon(max) = \frac{\frac{Vref(0.x3FF,min)}{2}}{Rmd_0} = \frac{\frac{1.00}{2}}{170} = 2.94 \, mA$$

Any other Imon value can be calculated using Rmd formula above. Due to its logarithmic characteristic, the steps between two consecutive values is kept within 3.3 % typical value.

A programmable overcurrent shutdown can be set to protect the laser by disabling the channel. The overcurrent protection value, Ilim, must be configured in register ILIMx using the following equations:

$$Ilim = (\Delta I(LDA), max) \cdot n \cdot k$$

$$n = \frac{Ilim \cdot (\Delta I(LDA), max)}{k}$$

with n going from 1 to 255.

 $\Delta I(LDA)$, max is the shutdown current threshold resolution (maximum value) (cf. Electrical Characteristics No. 108). Its value depend on the current range defined by register bit RACCx. If RACCx = 1, the overcurrent threshold is in the low range and $\Delta I(LDA)$, max = 0.375 mA. If RACCx = 0, the overcurrent threshold is in the high range and $\Delta I(LDA)$, max = 3 mA.

Register CRNGx splits each current range into 4 additional current ranges. k is a current range factor, with a value depending on CRNGx(1:0) register:

Current Range Factor	
CRNGx	k
00	750/750 = 1
01	750/100 = 7.5
10	750/25 = 30
11	750/9 = 83.3

Table 16: Current Range factor

ILIM1	Addr. 0x11; bit 7:0	R/W 0xFF
0x00	Channel 1 overcurrent threshold set to minimum current	
	Channel 1 overcurrent threshold set to $llim = (\Delta I(LDA), max \cdot n \cdot k)$, n from 0 to 255	
0xFF	Channel 1 overcurrent threshold set to maximum current	

Table 17: Overcurrent threshold configuration channel

ILIM2	Addr. 0x16; bit 7:0	R/W 0xFF
0x00	Channel 2 overcurrent threshold set to minimum current	
	Channel 2 overcurrent threshold set to $llim = (\Delta I(LDA), max \cdot n \cdot k)$, n from 0 to 255	
0xFF	Channel 2 overcurrent threshold set current	to maximum

Table 18: Overcurrent threshold configuration channel 2

An overcurrent event can be simulated using SOVCx. If SOVCx = 1, the corresponding overcurrent error bit OVCx will be set to 1, the error will be signaled at NCHK and the corresponding laser channel will be disabled. The overcurrent error will remain forced until SOVCx = 0.

Rev A1, Page 16/46

SOVC1	Addr. 0x1D; bit 5	R/W 0
0	No Overcurrent event at channel 1 is simulated.	
1	Overcurrent event at channel 1 simulated.	

Table 19: Simulate overcurrent channel 1

SOVC2	Addr. 0x1D; bit 6	R/W 0
0	No overcurrent event at channel 2 is simulated.	
1	Overcurrent event at channel 2 simulated.	

Table 20: Simulate overcurrent channel 2

ACC mode

In this mode, the laser diode current is controlled and no monitor diode is required. ACC mode is selected setting EACCx register bit to 1. Figure 7 shows an example of this configuration.

EACC1	Addr. 0x10; bit 0	R/W 0
0	APC mode enabled for channel 1	
1	ACC mode enabled for channel 1	

Table 21: APC/ACC in channel 1

EACC2	Addr. 0x15; bit 0	R/W 0
0	APC mode enabled for channel 2	
1	ACC mode enabled for channel 2	

Table 22: APC/ACC in channel 2

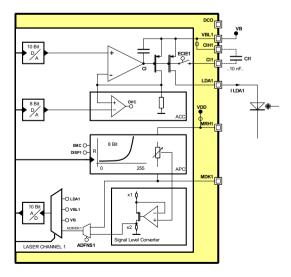


Figure 7: ACC mode simplified

In ACC mode an internal resistor, RACCx, is used instead of the internal programmable logarithmic monitor resistor (PLR). Different current ranges can be selected though register bits RACCx and CRNGx(1:0).

RACC1	Addr. 0x1A; bit 0	R/W 0
0	Current range high for channel 1	
1	Current range low for channel 1	

Table 23: RACC1 configuration

RACC2	Addr. 0x1A; bit 4	R/W 0
0	Current range high for channel 2	
1	Current range low for channel 2	

Table 24: RACC2 configuration

CRNG1(1:0)	Addr. 0x1E; bit 1:0 R/W 00
00	Output current range from 0 to 750 mA, RACC1 = 0
01	Output current range from 0 to 100 mA, RACC1 = 0
10	Output current range from 0 to 25 mA, RACC1 = 0
11	Output current range from 0 to 9 mA, RACC1 = 0

Table 25: Current range channel 1

CRNG2(1:0)	Addr. 0x1E; bit 5:4 R/W 00
00	Output current range from 0 to 750 mA, RACC2 = 0
01	Output current range from 0 to 100 mA, RACC2 = 0
10	Output current range from 0 to 25 mA, RACC2 = 0
11	Output current range from 0 to 9 mA, RACC2 = 0

Table 26: Current range channel 2

Table 27 shows a list with all selectable current ranges.

ACC Current Ranges			
CRNGx(1:0)	RACCx	Idc(LDA)	
00	0	750 mA	
01	0	100 mA	
00	1	90 mA	
10	0	25 mA	
01	1	12 mA	
11	0	9 mA	
10	1	3 mA	
11	1	1.1 mA	

Table 27: ACC current ranges

For fine-tuning the regulated current, the reference voltage can be set with a 10 bit logarithmic D/A converter, which is configurable through the register REFx. This converter has a voltage range that goes typically from 0.1 V to 1.1 V, allowing an operation resolution of typically 0.235%. More information on the logarithmic D/A converter can be found on page 26.

Table 28 shows some typical current settings. For detailed limits, please refer to Electrical Characteristics No. 114

Rev A1, Page 17/46

ACC typical current settings			
CRNG(1:0)	REFx	RACCx=0	RACCx=1
00	0x000	125.3 mA	15.66 mA
00	0x001	125.6 mA	15.70 mA
00	0x010	125.9 mA	15.73 mA
00	0x200	416.6 mA	52.08 mA
00	0x201	417.6 mA	52.20 mA
00	0x202	418.6 mA	52.33 mA
00	0x3FD	1376.1 mA	172.01 mA
00	0x3FE	1379.3 mA	172.41 mA
00	0x3FF	1382.6 mA	172.82 mA

Table 28: ACC typical current settings

A programmable overcurrent threshold is available in order to protect the laser diode during the power-on instant. The overcurrent protection value, Ilim, must be configured in the 8 bit register ILIMx using the following equations:

$$Ilim = (\Delta I(LDA), max) \cdot n \cdot k$$

$$n = \frac{Ilim \cdot (\Delta I(LDA), max)}{k}$$

with n going from 0 to 255.

If ILIM is set to 0 in ACC mode, the overcurrent protection is disconnected.

 $\Delta I(LDA)$, max is the shutdown current threshold resolution (maximum value) (cf. Electrical Characteristics No. 108). Its value depend on the current range defined by register bit RACCx. If RACCx = 1, the overcurrent threshold is in the low range and $\Delta I(LDA)$, max = $0.375 \, \text{mA}$. If RACCx = 0, the overcurrent threshold is in the high range and $\Delta I(LDA)$, max = 3 mA. k is a current range factor, with a value depending on CRNGx(1:0) register (see table 16)

ILIM1	Addr. 0x11; bit 7:0	R/W 0xFF
0x00	Channel 1 overcurrent protection disconnected	
	Channel 1 overcurrent threshold set to $llim = (\Delta l(LDA), max \cdot n \cdot k)$, n from 1 to 255	
0xFF	Channel 1 overcurrent threshold set current	to maximum

Table 29: Overcurrent threshold configuration channel

ILIM2	Addr. 0x16; bit 7:0	R/W 0xFF
0x00	Channel 2 overcurrent protection dis	sconnected
	Channel 2 overcurrent threshold set $llim = (\Delta I(LDA), max \cdot n \cdot k)$, n from	to 1 to 255
0xFF	Channel 2 overcurrent threshold set current	to maximum

Table 30: Overcurrent threshold configuration channel

An overcurrent event can be simulated using bit SOVCx. If SOVCx = 1, the corresponding overcurrent error bit OVCx will be set to 1, the error will be signaled through NCHK and the corresponding laser channel will be disabled. The overcurrent error will remain forced until SOVCx = 0.

SOVC1	Addr. 0x1D; bit 5	R/W 0
0	No overcurrent event at channel 1 is simulated.	
1	Overcurrent event at channel 1 simu	lated.

Table 31: Simulate overcurrent channel 1

SOVC2	Addr. 0x1D; bit 6	R/W 0
0	No overcurrent event at channel 2 is simulated.	
1	Overcurrent event at channel 2 simula	ted.

Table 32: Simulate overcurrent channel 2

In ACC mode, the MDKx pin can be monitored through a 10 bit A/D converter from 0 V up to 1.1 V. This can be used for measuring the laser light power, if a photodiode is connected to pin MDKx, as it is shown in figure 8. This allows adjusting the voltage reference in order to set the laser current and obtain the desired laser light power.

The internal programmable logarithmic monitor Resistor (PLR), if enabled (DISPx = 0), gives feedback for the current control through the 10 bit A/D converter. Register bit ADFNSx must be set to 0 in order to measure the internal sense node. An external monitor resistor can be used to measure the optical power, achieved by setting DISPx to 1. Therefore register bit ADFNSx must be set to 1 in order to measure directly at pin MDKx.

Rev A1, Page 18/46

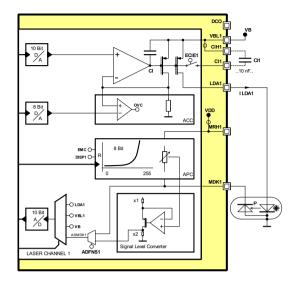


Figure 8: ACC with monitor photodiode

ACC mode permits combining both channels in one iC-HTP (see chapter COMBINING BOTH CHANNELS) and several iC-HTP in parallel. When both channels are combined the programmable overcurrent shutdown is carried out per each channel. If both channels are configured in ACC mode, LDA1 and LDA2 can be connected together. Each channel can be configured with a different current range, yielding different granularity in steps regulation for each channel.

The Regulator

In MCU mode the control can be carried out without the need of external capacitor. This allows a fast response of the regulator. The speed of the regulator's response and stability can be configured using three bits (COMPx), providing a current compensation factor.

COMP1	Addr. 0x13; bit 6:4	R/W 011
000	Minimum compensation current for t regulator, slower response	he channel 1
111	Maximum compensation current for regulator, faster response	the channel 1

Table 33: Current compensation channel 1

COMP2	Addr. 0x18; bit 6:4	R/W 011
000	Minimum compensation current for th regulator, slower response	e channel 2
111	Maximum compensation current for the regulator, faster response	ne channel 2

Table 34: Current compensation channel 2

Alternatively it is possible to use external capacitors connected to pins CIx and CIHx. In this case, register bit ECIEx should be set to 1 and COMPx to its highest value, "111".

ECIE1	Addr. 0x10; bit 1	R/W 0
0	External CI capacitor for channel 1	disconnected
1	External CI capacitor for channel 1	connected

Table 35: Enable external capacitor channel 1

ECIE2	Addr. 0x15; bit 1	R/W 0
0	External CI capacitor for channel 2 dis	sconnected
1	External CI capacitor for channel 2 co	nnected

Table 36: Enable external capacitor channel 2

The regulator is offset compensated in order to prevent optical power drifts. Offset compensation can be disabled by setting register bit EOCx to 0.

EOC1	Addr. 0x10;	bit 4	R/W 1
0	Channel 1 regulator	offset compensation	n disabled
1	Channel 1 regulator	offset compensation	n enabled

Table 37: Enable offset compensation channel 1

EOC2	Addr. 0x15; bit 4	R/W 1
0	Channel 2 regulator offset compensa	tion disabled
1	Channel 2 regulator offset compensa	tion enabled

Table 38: Enable offset compensation channel 2

An internal oscillator is used for the offset compensation. A watchdog timer (WDT) is included in order to monitor proper function of the oscillator. If an error is detected by the WDT, the laser channels are disabled, OSCERR error bit is set in STATUS0 register and the error event is signaled at pin NCHK. This error signaling can be suppressed using the mask register bit MOSCERR (set to 1).

MOSCERR	Addr. 0x1D; bit 0	R/W 0
0	Oscillator error (watchdog) will be sign	aled at NCHK
1	Oscillator error (watchdog) will not be NCHK	signaled at

Table 39: Oscillator error mask

iC-HTP monitors the saturation voltage of the regulator's output transistor at pin LDAx. The LDA saturation threshold can be configured through register bits RL-DASx.

Rev A1, Page 19/46

RLDAS1	Addr. 0x13; bit 3:2 R/W 00
00	V(LDA1) > VBL1-0.5 V sets the LDASAT1 alarm bit
01	V(LDA1) > VBL1-0.8 V sets the LDASAT1 alarm bit
10	V(LDA1) > VBL1-1.0 V sets the LDASAT1 alarm bit
11	V(LDA1) > VBL1-1.2 V sets the LDASAT1 alarm bit

Table 40: LDA saturation threshold selection channel 1

RLDAS2	Addr. 0x18; bit 3:2	R/W 00
00	V(LDA2) > VBL2-0.5 V sets the LDAS	
01	V(LDA2) > VBL2-0.8 V sets the LDAS	
10	V(LDA2) > VBL2-1.0 V sets the LDAS	
11	V(LDA2) > VBL2-1.2 V sets the LDKS	AT2 alarm bit

Table 41: LDA saturation threshold selection channel 2

If the LDAx voltage goes upper than the LDA saturation threshold the LDASATx error bit in STATUS1 register will be set and it will be signaled through output pin NCHK. Setting the mask register bit MLDASATx to 1 suppresses the signaling at NCHK.

MLDASAT1	Addr. 0x1D; bit 2	R/W 1
0	LDASAT1 event will be signaled at N	NCHK
1	LDASAT1 event will not be signaled	at NCHK

Table 42: LDA saturation mask channel 1

MLDASAT2	Addr. 0x1D;	bit 3	R/W 1
0	LDASAT2 event will	be signaled at NCHK	
1	LDASAT2 event will	not be signaled at NCF	łK

Table 43: LDA saturation mask channel 2

Laser channel enabling and error handling

With pin INS/WKR or EMC unconnected, a corresponding error signal will be generated (INSOPEN, EM-COPEN). Any of these error signals will disable the laser channels.

Setting DISC1 and DISC2 to 1(default) disables the corresponding channel.

The errors in STATUS0 and STATUS1 registers disable the laser channels. Every change in the STATUS registers is signaled at pin NCHK, unless the error event is masked by the corresponding error mask bit.

Register	Address	Bits	Default	Description
INITRAM	0x00	0	R/O	RAM initialized.
PDOVDD	0x00	1	R/O	Power down event at VDD
MEMERR	0x00	2	R/O	RAM memory validation error
OVT	0x00	3	R/O	Overtemperature event
OVC2	0x00	4	R/O	Overcurrent at channel 2
OVC1	0x00	5	R/O	Overcurrent at channel 1
OSCERR	0x00	6	R/O	Oscillator error (watchdog set)
CFGTIMO	0x00	7	R/O	Configuration mode timeout event
MAPC1	0x01	0	R/O	Channel 1 current state
MONC1	0x01	1	R/O	Monitor channel 1 enabled at least once (latched)
LDASAT1	0x01	2	R/O	Channel 1 LDA saturation event
PDOVBL1	0x01	3	R/O	Power down event at VBL1 or VBL1 not equal to VBL2 in merge mode
MAPC2	0x01	4	R/O	Channel 2 current state
MONC2	0x01	5	R/O	Monitor channel 2 enabled at least once (latched)
LDASAT2	0x01	6	R/O	Channel 2 LDA saturation event
PDOVBL2	0x01	7	R/O	Power down event at VBL2 or Power down in any of VBL1 or VBL2 in merge mode

Table 44: Status registers overview

In order to enable the channels, the error events must be acknowledged. Acknowledging an error is accomplished by reading the STATUS register. After a power-on PDOVDD, PDOVBL1, PDOVBL2 and INITRAM errors will be set, therefore it is required to read STA-TUS0 and STATUS1 registers after each power-on.

Exiting standby mode will not reset the RAM but will set the PDOVDD status bit. Therefore STATUS0 must be read once after each standby to re-enable the laser channels.

In case of an overcurrent (OVC) or an overtemperature (OVT) event, laser channels are disabled.

Rev A1, Page 20/46

A memory error event and a configuration timeout error event will also disable the laser channels. More

information about the memory error on page 35. The conditions to enable each laser channel are shown in figure 9.

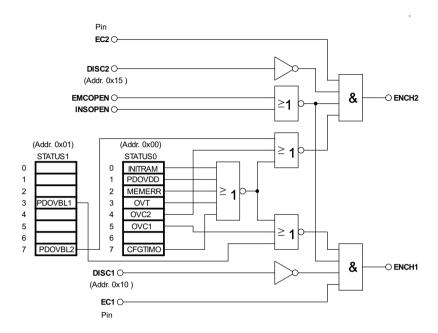


Figure 9: Laser control logic in MCU mode

Rev A1, Page 21/46

COMBINING BOTH CHANNELS

iC-HTP can drive one laser diode up to 1500 mA with both channels combined.

Therefore register bit MERGE must be set to 1. Disable channel register bits DISC1 and DISC2 must both be set to 0 and both enable channel pins EC1 and EC2 must be set hi.

MERGE	Addr. 0x1B; bit 6	R/W 0
0	Channel 1 and 2 operate independ	lently
1	Power transistor from channel 2 in parallel with channel 1, controlled by channel 1	

Table 45: Channel merging

When both channels are combined the control is done by channel 1. APC and ACC can both be used with both channels combined. In ACC mode, the reference needs to be set at 50% of the desired current value. This is not required for APC. Both VBL1 and VBL2 must be connected to the same voltage level. If voltages at VBL1 and VBL2 are different, PODOVBL1 bit in status register will be set and laser will be shut down. In merge mode, the PODOVBL2 bit is used to monitor both VBL1 and VBL2 voltages for power down. If any of the VBL1 or VBL2 are in power down, this bit will be set.

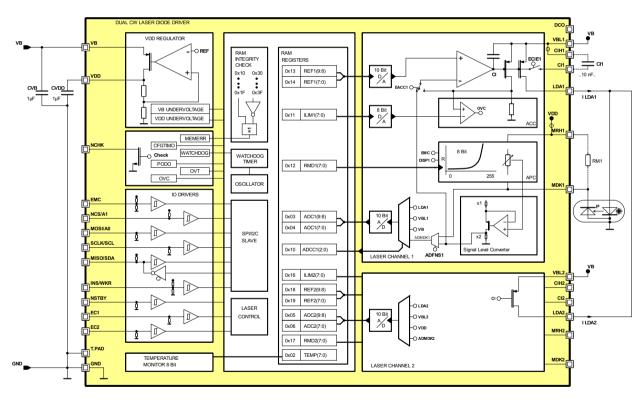


Figure 10: Combining both channels

In combined mode, the internal CI nodes of both channels are connected together. If required, an external capacitor on channel 1 can be used for improved stability. It is possible to have an additional external capacitor on channel 2 if ECIE2 bit is set to 1. Having an external capacitor on channel 2 and none on channel 1 is invalid.

On combined operation both overcurrent thresholds are active. The overcurrent threshold channel 1 needs to be set at 50% and the overcurrent threshold channel 2 should be disabled by setting it to its maximum value (0xFF). An overcurrent will only be detected on channel

It is possible to use a second photodiode connected to channel 2 (e.g. as a safety supervisor). The ADC on channel 2 can be used to monitor the voltage at pin MDK2, as it is shown in figure 11.

Rev A1, Page 22/46

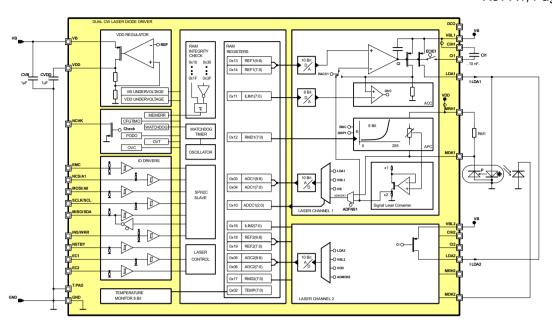


Figure 11: Additional photodiode in combined configuration

Rev A1, Page 23/46

SERIAL COMMUNICATION INTERFACES

SPI slave interface

The SPI slave interface is enabled by setting pin INS/WKR to lo and uses pins NCS/A1, SCLK/SCL, MISO/SDA and MOSI/A0. Pin NCS/A1 is the chip select pin and must be set lo by the SPI master in order to start communication. Pins MISO/SDA and MOSI/A0 are the data communication lines and pin SCLK/SCL is the clock line generated by the SPI master (e.g. microcontroller). The SPI protocol frames are shown in figure 12.

A communication frame consists of one address byte and at least one data byte. Bits 7:6 of the address byte is the opcode used for selecting a read operation (set to "10") or a write (set to "01") operation. The remaining 6 bits are used for register addressing.

It is possible to transmit several bytes consecutively, if the NCS signal is not reset and SCLK/SCL keeps clocking, as it is shown in figure 12. The address is internally incremented after each transmitted byte. Once the address reaches the last register (0x3F), it is reset back to 0x00.

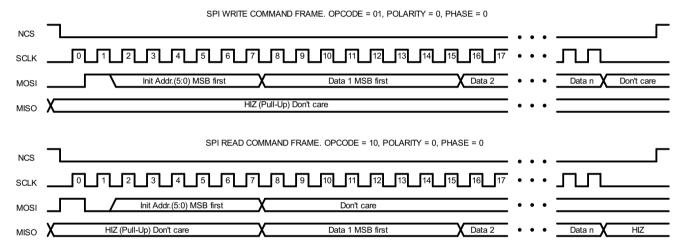


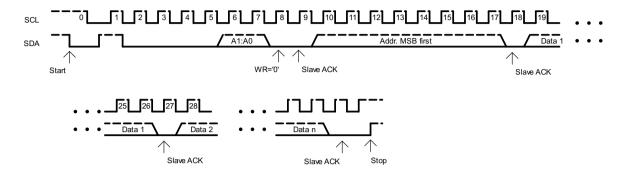
Figure 12: SPI read and write commands

I²C slave interface

The I²C slave interface is enabled by setting pin INS/WKR to hi and uses pins NCS/A1, SCLK/SCL, MISO/SDA and MOSI/A0. The protocol frames are shown in figure 13.

Action	b7	b6	b5	b4	b3	b2	b1	b0
Write to slave	1	0	0	0	0	A1	A0	0
Read from slave	1	0	0	0	0	A1	A0	1

Table 46: I²C write/read byte


A communication frame consists of one slave address
byte, one register address byte and at least one data
byte. Bits 7:1 of the slave address byte form the slave
identification code (ID) and bit 0 is used for specification
of the data direction (0 for write, 1 for read). The slave
ID consists of 7 bits. The five most significant bits are
fixed by default to value 0b10000. Pins MOSI/A0 and
NCS/A1 are used to set the remaining slave ID bits
(see table 46 and 47).

Action	A 1	A0	Slave ID	Address byte
Write to slave 0	lo	lo	0x40	0x80
Read from slave 0	lo	lo	0x40	0x81
Write to slave 1	lo	hi	0x41	0x82
Read from slave 1	lo	hi	0x41	0x83
Write to slave 2	hi	lo	0x42	0x84
Read from slave 2	hi	lo	0x42	0x85
Write to slave 3	hi	hi	0x43	0x86
Read from slave 3	hi	hi	0x43	0x87

Table 47: I²C write/read address

Rev A1, Page 24/46

I2C WRITE COMMAND FRAME.

I2C READ COMMAND FRAME.

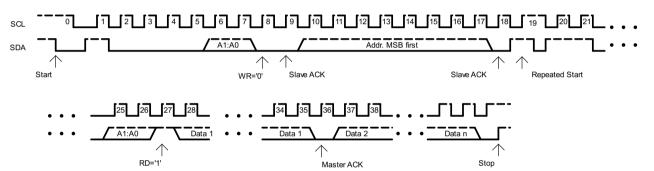


Figure 13: I²C read and write commands

Rev A1, Page 25/46

8 BIT INTERNAL PROGRAMMABLE LOGARITHMIC MONITOR RESISTORS

In MCU mode internal 8 bit programmable logarithmic monitor resistors (PLRx) are provided for APC.

The resistor value can be selected from 256 values, ranging from 100Ω to $500 k\Omega$, following logarithmic increments with a typical step width of 3.3%. The resistors are configured with registers RMDx(7:0).

RMD1	Addr. 0x12; bit 7:0	R/W 0xFF
0x00	PLR1 set to the minimum resistance	
	PLR1 set to $Rmd = Rmd_0(1 + \frac{\Delta Rmd(\%)}{100})^{n+1}$, n from	m 0 to 255
0xFF	PLR1 resistor set to the maximum re	sistance

Table 48: MDK resistor channel 1

RMD2	Addr. 0x17; bit 7:0 R/	/W 0xFF
0x00	PLR2 resistor set to the minimum resistant	ce
	PLR2 set to $Rmd = Rmd_0(1 + \frac{\Delta Rmd(\%)}{100})^{n+1}$, n from 0 to	255
0xFF	PLR2 resistor set to the maximum resistan	ce

Table 49: MDK resistor channel 2

The following formula calculates the register RMDx in order to set the desired resistor value:

$$Rmd = Rmd_0(1 + \frac{\Delta Rmd(\%)}{100})^{n+1}$$
, n from 0 to 255

Where Rmd₀ is the minimum resistor value (typically 100 Ω), $\Delta Rmd(\%)$ is the step between two consecutive resistor values (typically 3.3%) and n is the value of RMDx register in decimal.

In APC mode the regulation node is the internal connection to PLR, it is not MDAx pin. Voltage present at pin MDKx may differ from the internal regulation node. This regulation node can be sensed through the 10 bit A/D converter and read at register ADCx. Register bit ADFNSx must be set to 0 for this purpose. If ADFNSx is set to 1, MDKx pin will be the input of the A/D converter.

At pin MDKx only the 4 MSB of the RMDx configuration from PLRx are measurable. The 8 bits of the PLRx configuration RMDx can be measured with the A/D converter setting ADFNSx to 0.

The PLRx can be disabled using register bit DISPx. With DISPx = 0 the PLRx is enabled and DISPx = 1 disables the PLRx.

DISP1	Addr. 0x10; bit 2	R/W 0	
0	PLR enabled for channel 1		
1	PLR disabled for channel 1		

Table 50: Disable PLR channel 1

DISP2	Addr. 0x15; bit 2	R/W 0
0	PLR enabled for channel 2	
1	PLR disabled for channel 2	

Table 51: Disable PLR channel 2

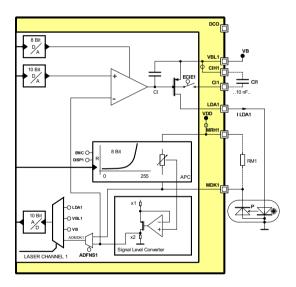


Figure 14: PLR in APC

In ACC mode the PLR is not used in the control circuit. Instead, the internal RACCx resistor is used in the control loop.

Even though the PLR is not in the control circuit, it can be enabled (DISPx = 0) in order to give feedback through the 10 bit A/D converter for the controlling light power if a monitor diode is connected.

Register bit ADFNSx is set to 0 to measure the internal sense node. Alternatively, an external monitor resistor can be used to measure the optical power, by setting DISPx to 1. Then register bit ADFNSx must be set to 1 in order to measure directly at pin MDKx.

Rev A1, Page 26/46

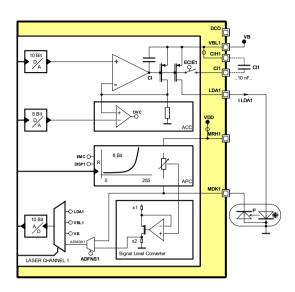


Figure 15: ACC with monitor photodiode

10 BIT LOGARITHMIC D/A CONVERTER

The 10 bit logarithmic D/A converter is used for setting the regulator's voltage reference. The D/A converter is active in all operating modes. In iC-WK mode only two values are available: 0.25 V (setting INS/WKR pin lo) and 0.5 V (setting INS/WKR pin hi). In MCU mode both APC and ACC use the D/A converter. With a range from 0.1 V to 1.1 V and the typical step width is 0.235%.

The D/A converter is configured through register REFx(9:0). With REFx(9:0) = 0x000, D/A output value is set to 0.1 V, and for REFx(9:0) = 0x3FF, D/A output is configured to 1.1 V.

REF1	Addr. 0x13/14; bit 9:0	R/W 0x000	
0x000	Channel 1 regulator reference voltage se minimum voltage	et to	
	Channel 1 regulator reference voltage set to Vref = $Vref_0(1 + \frac{\Delta Vref(\%)}{100})^{n+1}$, n from 0 to 1023		
0x3FF	Channel 1 regulator reference voltage se maximum voltage	et to	

Table 52: Channel 1 regulator voltage reference

REF2	Addr. 0x18/19; bit 9:0 R/	/W 0x000
0x000	Channel 2 regulator reference voltage set minimum voltage	to
	Channel 2 regulator reference voltage set $Vref = Vref_0(1 + \frac{\Delta Vref(\%)}{100})^{n+1}$, n from 0 to	to 1023
0x3FF	Channel 2 regulator reference voltage set maximum voltage	t to

Table 53: Channel 2 regulator voltage reference

To calculate the D/A converter value for each REFx value, use the following expression:

$$Vref = Vref_0(1 + \frac{\Delta Vref(\%)}{100})^{n+1}$$
, n from 0 to 1023

Where Vref₀ is the minimum value (typically 0.1 V), $\triangle Vref(\%)$ is the step value (typically 0.235 %) and n is the value of REFx register in decimal.

Rev A1, Page 27/46

10 BIT LINEAR A/D CONVERTER

A 10 bit linear A/D converter is available for each channel when working in MCU mode. A variety of voltages can be measured by the converter with two resolutions:

- V(LDAx) up to 11 V with 11.81 mV resolution
- V(VDD) up to 8 V with 8.6 mV resolution
- V(VB) up to 11 V with 11.81 mV resolution
- V(VBLx) up to 11 V with 11.81 mV resolution
- V(MDKx) up to 1.1 V with 1.075 mV resolution
- V(RACC) up to 1.1 V with 1.075 mV resolution
- V(PLRx) up to 1.1 V with 1.075 mV resolution

The register bits ADCCx select the signal measured with the 10 bit A/D converter.

ADCC1(2:0)	Addr. 0x10;	bit 7:5	R/W 000
0xx	Channel 1 ADC disa	abled	
100	Channel 1 ADC sou CMES1 = 0	rced by V	(MDK1), ADFNS1 = 1,
100	Channel 1 ADC sou CMES1 = 0	rced by V	(PLR1), ADFNS1 = 0,
100	Channel 1 ADC sou CMES1 = 1	rced by A	CC current sensor,
101	Channel 1 ADC sou	rced by V	(VB)
110	Channel 1 ADC sou	rced by V	(VBL1)
111	Channel 1 ADC sou	rced by V	(LDA1)

Table 54: ADC channel 1 source selection

ADCC2(2:0)	Addr. 0x15;	bit 7:5	R/W 000
0xx	Channel 2 ADC disa	abled	
100	Channel 2 ADC sou CMES2 = 0	rced by V(N	/IDK2), ADFNS2 = 1,
100	Channel 2 ADC sou CMES2 = 0	rced by V(F	PLR2), ADFNS2 = 0,
100	Channel 2 ADC sou CMES2 = 1	rced by AC	C current sensor,
101	Channel 2 ADC sou	rced by V(V	/DD)
110	Channel 2 ADC sou	rced by V(V	/BL2)
111	Channel 2 ADC sou	rced by V(L	.DA2)

Table 55: ADC channel 2 source selection

With ADCCx(2:0) = 100, the signal to the A/D converter is selected by register bit ADFNSx (A/D converter force not sense). With ADFNSx = 0 the measuring point to the A/D converter is the internal sense node of the internal programmable logarithmic monitor resistor (PLR). With ADFNSx = 1 the sensing point is connected directly to MDKx pin.

4	ADFNS1	Addr. 0x1A; bit 2	R/W 0		
0)	ADC measurement PLR1 (sense)			
1	l	ADC measurement MDK1 pin (force)			

Table 56: ADC channel 1 sense/force selection

ADFNS2	Addr. 0x1A; bit 6	R/W 0
0	ADC measurement PLR2 (sense)	
1	ADC measurement MDK2 pin (force)	

Table 57: ADC channel 2 sense/force selection

With the CMESx bit, the ADC can be used for laser current measurement in ACC mode. For this measurement, ADCCx register must be set to 100. As shown in figure 7, a fraction of the current delivered by the driver to the laser is mirrored to a resistor. The voltage drop at this resistor is sourced to the ADC. For a given value of the ADC, the current can be calculated as follows

$$I(LDAx) = \frac{\frac{VFS}{1023}*ADCx}{R}*MFACT$$

VFS is the fullscale voltage of the A/D converter (cf. Electrical Characteristics No. 706) typical 1.1 V. MFACT is the Mirror factor between the LDA driver and the measurement. This Factor is dependent on the selected current range (CRNG(1:0)), see table below:

ACC Mirror factor		
CRNG Mirror factor		
00	30	
01	83	
10	333	
11	2500	

Table 58: ACC mirror factor

R is the value of the measurement resistance, this value is dependent on RACC bit, see table below:

Current sensor resistor		
RACC	Resistance value	
0	2 kΩ	
1	16 kΩ	

Table 59: Current sensor resistor

When enabled, the A/D converter is continuously acquiring the signal selected by ADCCx register. The conversion time, is 140 µs. Changing the source requires 500 µs settling time.

Rev A1, Page 28/46

In order to do a measurement, register ADCx must be read. The converter does not provide an end of conversion (EOC) bit. Instead, ADCx register contains always the value of the last conversion.

As the A/D converter is 10 bit long, the results are split into two byte wide separated registers; ADCxh contains channel x ADC MSBs values while ADCxI stores the LSBs. A consecutive read action of both registers (lower and upper part) should be carried out in order to prevent an undesired change in the measured value between two read actions.

ADC1	Addr. 0x03/04; bit 9:0	R
0x000	ADC minimum value	
0x3FF	ADC maximum value	

Table 60: ADC channel 1

ADC2	Addr. 0x05/06;	bit 9:0	R
0x000	ADC minimum value		
0x3FF	ADC maximum value		

Table 61: ADC channel 2

The voltage corresponding to the measured digital value can be directly obtained through the following formula:

$$V(LDAx, VB, VBLx) = 11 * \frac{VFS}{1023} * ADCx$$

$$V(VDD) = 8 * \frac{VFS}{1023} * ADCx$$

$$V(MDKx, PLRx) = \frac{VFS}{1023} * ADCx$$

VFS is the fullscale voltage of the A/D converter (cf. Electrical Characteristics No. 706) typical 1.1 V. For a more precise measurement, the A/D converter can be calibrated by measuring a known VB voltage and calculate the VFS.

If ADFNSx = 1 the sensing point is connected directly to MDKx pin. Depending on the regulation voltage, it is possible that V(MDKx) is higher than 1.1 V. When MDKx pin is the source of the A/D converter, saturation of the converter will occur. When monitoring pin MDKx with the A/D converter, V(MDKx) must be lower than 1.1 V.

Rev A1, Page 29/46

DC/DC CONVERTER OPTIMIZATION

iC-HTP provides a 6 bit configurable current at pin DCO that can be used to trim the output voltage of a DC/DC converter.

Possible application benefits with using DCO:

- DC/DC step down operation: regulation at voltages lower than power supply
- · DC/DC step up operation: regulation at voltages higher than power supply
- Efficiency enhancement

RDCO	Addr. 0x1B; bit 5:0	R/W 0x02
0x00	No current	
0x3F	Typ. 130 μA (cf. Electrical Characteristics No. D01)	

Table 62: Digital current output register

The proposed applications can be demonstrated with a standard DC/DC converter e.g. TPS63060DSC from Texas Instruments. This converter allows an input voltage ranging from 2.5 V to 12 V and offers an output voltages from 2.5 V to 8 V. It is capable of delivering up to 2 A current, depending on the output voltage. Figure 16 shows a possible configuration.

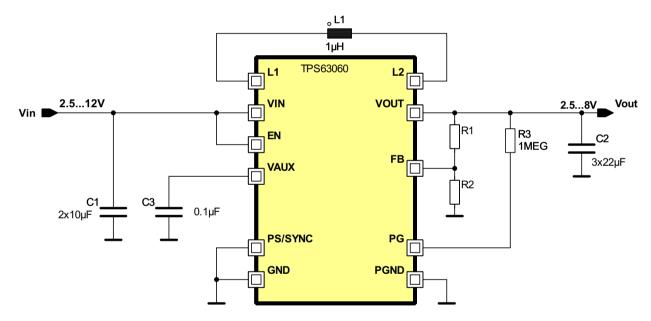


Figure 16: TPS63063 DC/DC converter from TI

DC/DC step down operation: regulation at voltages lower than power supply

The resistors R1 and R2 in the feedback path allow setting the desired output value Vout. The DC/DC converter drives Vout pin in order to yield 0.5 V at feedback pin FB. The DCO output signal from iC-HTP is connected to FB pin. The Vout is controlled with the internal register RDCO from iC-HTP.

The DCO current into FB node controls the voltages of the divider R1 and R2 and Vout changes in order to maintain 0.5 V at FB pin. Selecting R1 and R2 needs to consider:

- · Resistors values: $R1 = R2(\frac{Vout}{Vfb} - 1)$
- Current of the voltage divider should be high enough, in comparism to the current from the pin DCO, to of-

fer acceptable resolution. The programmable current resolution from register RDCO is 2 µA.

 DCO current into the voltage divider will lower Vout voltage, Vout is 8 V when no current is present at DCO.

Choosing R1 to $100 \text{ k}\Omega$, the value of R2 can be calculated:

$$R2 = \frac{R1}{\frac{Vout}{Vfb} - 1} = \frac{100k}{\frac{8}{0.5} - 1} = 6.7k\Omega$$

With this configuration the current through the voltage divider is 75 µA at 8 V . The resolution of each RDCO step is then 200 mV.

Rev A1, Page 30/46

The value in RDCO register needed in order to have the desired output voltage can be calculated using the following formula:

$$RDCO = \frac{Idco}{2uA} = \frac{IR2 - IR1}{2uA} = \frac{\frac{0.5}{6.7k} - \frac{Vout - 0.5}{100k}}{2uA}$$

The resulting value will vary slightly depending on the tolerances of the selected resistors and DCO current.

The voltage is reduced from 8 V (RDCO = 0) to 2.5 V. when RDCO = 27.

DC/DC step up operation: regulation at voltages higher than power supply

A practical application of the present case is the control of blue lasers. This type of laser present a forward voltage around 5 V, which demands an LDA voltage of about 6 V. If the system is supplied with a 3 V LiPo battery, it is necessary to use a the DC/DC in order to step up and drive the laser diode and driver with a sufficient voltage. Figure 17 shows this application:

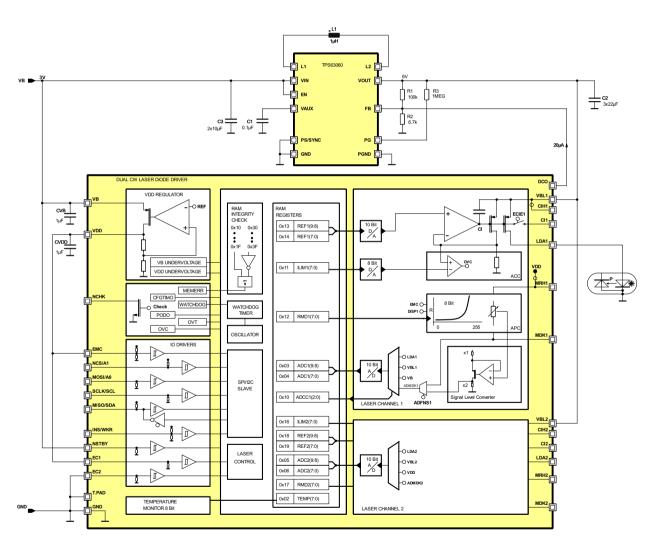


Figure 17: Regulation at voltage greater than power supply

Setting register RDCO to 10 it delivers 20 µA and 6 V are obtained at Vout.

Extension of system working voltage range

iC-HTP must be supplied by a voltage within the thresh-

old values of 2.8 V and 11 V. It is possible to control the DC/DC output in a voltage range of 2.5 V - 12 V if the DC/DC converter, controlled by DCO output signal, is included in the system, as it is shown in figure 18:

Rev A1, Page 31/46

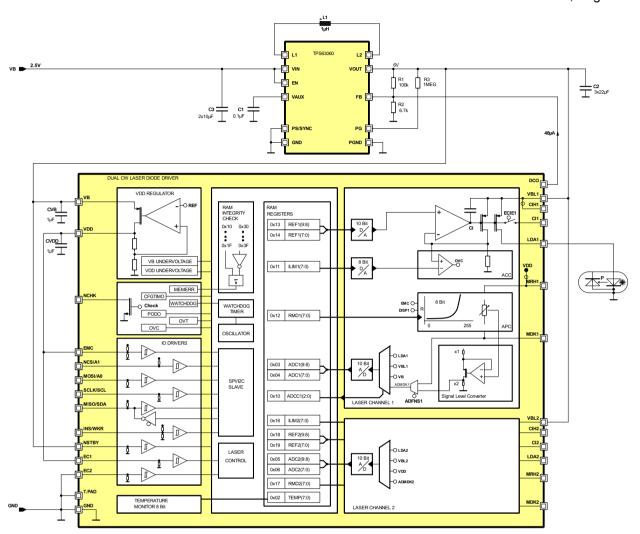


Figure 18: Extension of working voltage range

In the figure 18 both the laser and the iC-HTP are supplied by output voltage Vout from DC/DC converter. The register RDCO is set to 23, which forces 48 µA to be output to the voltage divider. A system voltage of 3.3 V is obtained at Vout.

Efficiency enhancement

If iC-HTP and the laser diode are supplied with the same power supply, the efficiency of the driver can be

poor, depending on the supplied voltage, the saturation voltage and the laser diodes forward voltage. Power dissipation of the driver can be reduced if LDAx is fed through the DC/DC converter configured to deliver a lower voltage than the power supply as shown in figure 19.

Rev A1, Page 32/46

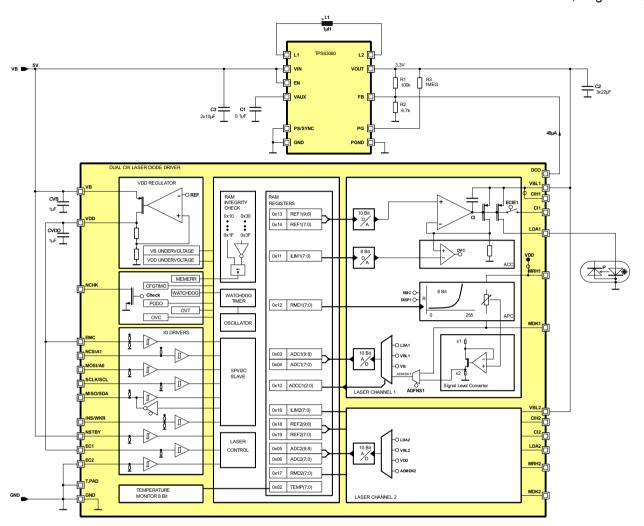


Figure 19: System efficiency enhancement

The register RDCO is set to 23 to provide a laser diode supply voltage of 3.3 V at Vout.

Rev A1, Page 33/46

WATCHDOG TIMER

The internal 200 kHz oscillator is monitored with the Watchdog Timer (WDT).

If the oscillator remains longer than the maximum time of tWDT (cf. Electrical Characteristics No. E03) without activity an oscillator error is triggered. An oscillator error sets OSCERR error bit to 1. The automatic offset compensation of the laser control requires the oscillator.

The state of OSCERR is signaled at pin NCHK. The signaling of OSCERR state can be masked with bit MOSCERR. Setting MOSCERR to 1 masks the oscillator error and OSCERR will not be signaled at NCHK.

It is possible to simulate an error of the oscillator using SOSCERR bit. If SOSCERR = 1, the oscillator error is forced. When OSCERR is set to 1 the error will be signaled through NCHK, depending on the state of MOSCERR.

OSCERR	Addr. 0x00; bit 6	R	
0	Oscillator operates OK		
1	Watchdog timeout set, oscillator fail. Cleared on read		

Table 63: Oscillator error

MOSCERR	Addr. 0x1D; bit 0	R/W 0	
0	Oscillator error (watchdog) will be signaled at NCHK		
1	Oscillator error (watchdog) will not be signaled at NCHK		

Table 64: Oscillator error mask

SOSCERR	Addr. 0x1D; bit 7	R/W 0	
0	No oscillator error simulated.		
1	Oscillator error simulated (watchdog timeout).		

Table 65: Simulate oscillator error

Rev A1, Page 34/46

TEMPERATURE MONITOR AND PROTECTION

iC-HTP includes an 8 bit temperature monitor that allows to measure the internal chip temperature going from -40 °C to 125 °C. The resolution is 1 °C/LSB. The internal temperature can be obtained by reading TEMP register. The TEMP register is a read-only register.

TEMP	Addr. 0x02; bit 7:0	R
0x00	Minimum temperature	
0xFF	Maximum temperature	

Table 66: Chip temperature

Absolute read values may differ from one chip to another. An individual initial calibration of the temperature monitor is recommended. The TEMP register must be read at a known temperature. Using the resolution value of 1 °C/LSB, the internal temperature can be calculated.

The temperature monitor can be used to compensate temperature effects on the laser diode. The microcontroller can use a laser diode characteristic formula or a look-up table combined with the temperature value measured through TEMP register. The reference voltage can be configured accordingly in order to compensate temperature effects.

iC-HTP is protected against overtemperature. In iC-WK mode, if the internal temperature value exceeds the overtemperature threshold an OVT error event will be triggered and signaled through pin NCHK. Both laser channels will be disabled. Pin NCHK will keep signaling the error although the internal temperature goes down to a safe value below the overtemperature threshold value. If the temperature has exceeded the overtemperature threshold value, pins EC1 and EC2 have to be pulled lo in order to stop signaling the error. Setting pin ECx back hi will re-enable the corresponding channel.

In microcontroller mode, if the internal temperature exceeds a safety value an overtemperature error bit (OVT) will be set to 1. If OVT = 1, both channels will be disabled and the error event will be signaled through NCHK pin. If the internal temperature goes down to a safe value below the overtemperature threshold value, OVT will remain at value 1. Reading the OVT bit stop signaling error through pin NCHK. Reading OVT bit will set it back to 0. Setting ECx pin lo and then back hi will allow re-enabling the corresponding channel.

The overtemperature threshold value can not be configured.

OVT	Addr. 0x00; bit 3	R
0	No overtemperature event has occurred since read	e last
1	Overtemperature event has occurred. Cleared on read	

Table 67: Overtemperature detection

In microcontroller mode it is possible to simulate an overtemperature event using SOVT bit. Setting SOVT to 1, the overtemperature error flag OVT will be set to 1. iC-HTP will remain in error state until SOVT is set back to 0.

SOVT	Addr. 0x1D; bit 4	R/W 0
0	No overtemperature event is simulated.	
1	Overtemperature event simulated.	

Table 68: Simulate overtemperature

Rev A1, Page 35/46

DIGITAL INTERFACE AND MEMORY INTEGRITY MONITOR

iC-HTP provides a microcontroller slave interface by selection on the EMC pin. iC-HTP support the interfaces SPI or I²C that are selected by the INS/WKR pin.

EMC	Addr. Pin;
lo	iC-WK-mode, digital interfaces disabled
Open	Not allowed, error signaled
hi	MCU mode, interface selected by INS/WKR enabled

Table 69: Enable microcontroller

INS/WKR	Addr. Pin;
lo	SPI interface selected
Open	Not allowed, error signaled.
hi	I ² C interface selected

Table 70: Interface selection I²C or SPI

The configuration memory is integrity monitored and atomic executable (all at once: changes of the configurations without any direct effects, the changes are executed at once by command) to the functional blocks of iC-HTP.

Integrity monitoring is implemented by a duplication of the configuration registers into a validation page (see description below) where the register are automatically copied with inverted value. Every register bit is compared with its validation copy and in case of difference, a memory error is generated and both laser channels are switched off.

Atomic appliance is achieved by latching the configuration registers. This permits a full configuration (different registers) to be made prior to apply it to the laser channels. iC-HTP has two different modes selectable by the MODE(1:0) register (addr. 0x1C).

MODE(1:0)	Addr. 0x1C; bit 1:0	R/W 01
00	Invalid parameter	
01	Operation mode	
10	Configuration mode	
11	Invalid parameter	

Table 71: Configuration and operation mode

In Configuration mode, the configuration memory (addr. 0x10 to 0x1F) can be written and read back to check a correct communication without changing the present configured operation state of the iC-HTP. In this mode, the memory integrity check is disabled.

iC-HTP will monitor the time elapsed in configuration mode and automatically switch the laser off if it exceeds a configuration mode timeout. The time in configuration mode must be less than 40 ms for ensuring that no configuration timeout occurs during configuration (cf. Electrical Characteristics No. E02). The timeout can be up to 164 ms.

When writing the configuration is completed, iC-HTP is switched to operation mode by writing "10" into the MODE register (addr. 0x1C). In operation mode the configuration is applied to the iC-HTP and the memory integrity check activated. In this mode configuration registers can only be read (except MODE(1:0) register, which is always accessible). Figure 20 shows the interface to memory structure.

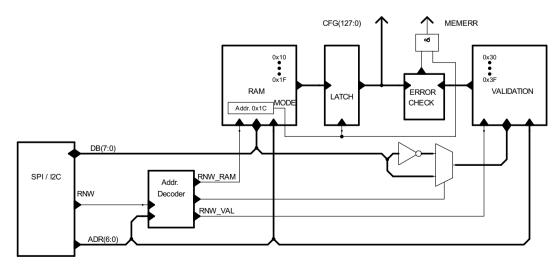


Figure 20: Interface, RAM integrity monitoring and configuration latching

Register map description

The register map consists of 64 addresses subdivided in three different pages:

Rev A1, Page 36/46

- · Read-only page, addr. 0x00 to 0x0F: iC-HTP status, ADC readouts, thermometer readout and chip revision.
- · Configuration page (integrity monitored), read--write registers, addr. 0x10 to 0x1F.
- Validation page, read-write registers, addr. 0x30 to 0x3F.

Read-only registers

Read-only registers are sub-divided as well into status registers (addr. 0x00 to 0x01) and measurement registers. Status registers are normally latched to 1 on events and cleared on read (see individual register description). Measurement registers are dual-port and can be accessed simultaneously with the measurements in progress. ADC1(addr. 0x03 to 0x04) and ADC2 (addr. 0x05 to 0x06) are 10 bit registers split into two 8 bit registers each and must be accessed in block mode (automatic address increment) to ensure data not changing during the read.

Configuration page (integrity monitored)

The configuration page (addr. 0x10 to 0x1F) contains the registers that control the driver. Every write operation to any of the registers of this page will be internally duplicated to the correspondent register at the validation page. After the write operation, the correspondent validation register will contain the inverted value of the configuration register.

Validation page

The validation page (addr. 0x30 to 0x3F) can be read or written normally. Only when a write procedure is made to any of the configuration registers the correspondent validation pair will be written with the inverted value of the configuration register as well.

Both the configuration and validation pages are initialized during power-up. This event is signaled at the

STATUS0 register (bit 0, INITRAM). In standby mode (NSTBY = Io) the RAM is not reset if any write command has been executed and therefore, configuration and validation pages keep the stored information and INITRAM remains unset. Entering standby mode after power-up without any write command, the RAM will be initialized again and the INITRAM bit will be set to 1 again. Any VDD power-down event signaled at the STA-TUS0 register outside the standby mode (NSTBY = hi) requires a RAM content check regardless of the state of the INITRAM bit to ensure data is not corrupted.

Possible start-up sequence:

- 1. iC-HTP starts in operation mode with default configuration. INITRAM, PDOVBLx and PDOVDD error bits must be set in STATUSx, DISC1 (addr. 0x10, bit 3) and DISC2 (addr. 0x15, bit 3) are set to 1.
- 2. Write MODE(1:0) = "10" register (Addr. 0x1C) to enable the configuration mode.
- 3. Configure the laser channels.
- 4. Read back to verify a correct data transfer.
- 5. Set the DISC1, DISC2 bits to 0 on used channels.
- 6. Read the status registers(addr. 0x00, 0x01, 0x02) to detect possible errors and validate status. If any error exist, read again to ensure its validation.
- 7. Write MODE(1:0) = "01" register (addr. 0x1C) to apply the configuration and enable the memory integrity check.
- 8. During operation: monitor the status registers checking for errors. The NCHK pin signals any set status bit if not masked. This pin can be used to trigger an microcontroller interrupt line.

Rev A1, Page 37/46

START-UP

Setting pin NSTBY to lo iC-HTP enters standby mode. In stand by mode and with no supply voltage at pin VDD and the current consumption on VB is reduced to less than 10 µA (cf. Electrical Characteristics No. 002).

After wake-up (pin NSTBY rising edge), the internal regulated supply VDD is generated again. The required time Tvdd depends on the capacitor connected to the VDD pin (cf. Electrical Characteristics No. 504).

Once the VDD voltage level is correct, iC-HTP enters an offset compensation procedure regardless of the state of the laser enable pins (EC1, EC2). During this

time (Ten), EC1 and EC2 are ignored and laser cannot be switched on (cf. Electrical Characteristics No. 111). After this time (Ten), laser channels can be switched

The switch-on procedure needs an initial time (Tci) to reach the 80 % of the target light power (in APC mode) or laser current (in ACC mode) (cf. Electrical Characteristics No. 112) and an additional time (Tcio) to reach the 99 % of the value (cf. Electrical Characteristics No. 113). Figure 21 illustrates an startup example for channel 1 in iC-WK mode.

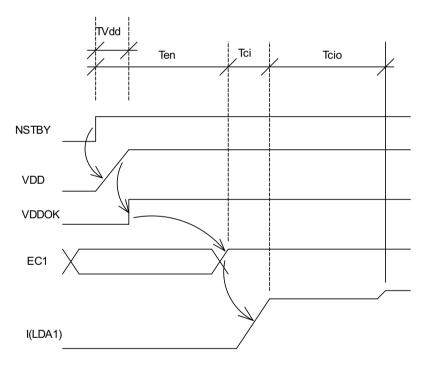


Figure 21: Startup timing diagram

Rev A1, Page 38/46

REGISTER OVERVIEW

OVERV	'IEW							
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00 R	CFGTIMO	OSCERR	OVC1	OVC2	OVT	MEMERR	PDOVDD	INITRAM
0x01 R	PDOVBL2	LDASAT2	MONC2	MAPC2	PDOVBL1	LDASAT1	MONC1	MAPC1
0x02 R	TEMP(7:0)							1
0x03 R							ADC	1(9:8)
0x04 R		1		ADC	1(7:0)	1		
0x05 R							ADC	2(9:8)
0x06 R				ADC	2(7:0)			
0x07 R				Not imp	lemented			
				Not imp	lemented			
0x0FR				Chip revi	sion mark			
0x10		ADCC1(2:0)		EOC1	DISC1	DISP1	ECIE1	EACC1
0x11				ILIM	1(7:0)			
0x12		RMD1(7:0)						
0x13	COMP1(2:0) RLDAS1(1:0) REF1(9:8)					1(9:8)		
0x14				REF	1(7:0)			
0x15		ADCC2(2:0) EO				DISP2	ECIE2	EACC2
0x16				ILIM	2(7:0)			
0x17				RMD	2(7:0)			
0x18			COMP2(2:0)		RLDAS	S2(1:0)	REF	2(9:8)
0x19				REF	2(7:0)			
0x1A	EXTT2	ADFNS2	CMES2	RACC2	EXTT1	ADFNS1	CMES1	RACC1
0x1B		MERGE			RDC	O(5:0)		
0x1C			Not impl	emented			MOD	E(1:0)
0x1D	SOSCERR	SOVC2	SOVC1	SOVT	MLDASAT2	MLDASAT1	MMONC	MOSCERR
0x1E			CRNG	32(1:0)			CRNC	€1(1:0)
0x1F			Rese	rved register(Fa	ctory test). Set to	o zero		
0x20		Not implemented						
				Not imp	lemented			
0x30			Va	alidation conten	t for 0x10, inverte	ed		
0x31		Validation content for 0x11, inverted						
0x3F			Va	alidation conten	t for 0x1F, inverte	ed		

Table 72: Register layout

Rev A1, Page 39/46

PARAMETERS

Register	Address	Bits	Default	Description
ADCC1	0x10	7:5	000	Configuration for ADC from channel 1
ADCC2	0x15	7:5	000	Configuration for ADC from channel 2
ADFNS1	0x1A	2	0	MDK force/sense for ADC measurement in channel 1
ADFNS2	0x1A	6	0	MDK force/sense for ADC measurement in channel 2
EXTT1	0x1A	3	0	Enable external transistor driver for channel 1
EXTT2	0x1A	7	0	Enable external transistor driver for channel 2
RACC1	0x1A	0	0	Channel 1 ACC resistor mirror factor
RACC2	0x1A	4	0	Channel 2 ACC resistor mirror factor
COMP1	0x13	6:4	011	Channel 1 regulator compensation current
COMP2	0x18	6:4	011	Channel 2 regulator compensation current
CRNG1	0x1E	5:4	00	Channel 1 current range
CRNG2	0x1E	1:0	00	Channel 2 current range
DISC1	0x10	3	1	Software disable for channel 1
DISC2	0x15	3	1	Software disable for channel 2
DISP1	0x10	2	0	Disable PLR for channel 1
DISP2	0x15	2	0	Disable PLR for channel 2
EACC1	0x10	0	0	Enable ACC mode for channel 1
EACC2	0x15	0	0	Enable ACC mode for channel 2
ECIE1	0x10	1	0	Enable external CI capacitor for channel 1
ECIE2	0x15	1	0	Enable external CI capacitor for channel 2
EOC1	0x10	4	1	Enable offset compensation for channel 1
EOC2	0x15	4	1	Enable offset compensation for channel 2
ILIM1	0x11	7:0	0xFF	Current limit at channel 1
ILIM2	0x16	7:0	0xFF	Current limit at channel 2
MERGE	0x1B	6	0	MERGE channels 1 and 2, controlled by channel 1
MLDASAT1	0x1D	2	1	LDASAT1 error mask
MLDASAT2	0x1D	3	1	LDASAT2 error mask
MMONC	0x1D	1	1	MONC error mask
MODE	0x1C	1:0	01	Configuration / Operation mode selection
MOSCERR	0x1D	0	0	OSCERR error mask
RDCO	0x1B	5:0	0x02	DC converter set point
REF1	0x13/0x14	9:0	0x000	Voltage reference at channel 1
REF2	0x18/0x19	9:0	0x000	Voltage reference at channel 2
RLDAS1	0x13	3:2	00	Channel 1 LDA saturation detector threshold
RLDAS2	0x18	3:2	00	Channel 2 LDA saturation detector threshold
RMD1	0x12	7:0	0xFF	Resistor at channel 1
RMD2	0x17	7:0	0xFF	Resistor at channel 2
SOSCERR	0x1D	7	0	Oscillator error simulation (watchdog timeout)
SOVC1	0x1D	5	0	Overcurrent event at channel 1 simulation
SOVC2	0x1D	6	0	Overcurrent event at channel 2 simulation
SOVT	0x1D	4	0	Overtemperature event simulation
Reserved	0x1A	7:0	0x00	Reserved
Reserved	0x1F	7:0	0x00	Reserved

Table 73: Parameter overview

Rev A1, Page 40/46

Register	Address	Bits	Default	Description
INITRAM	0x00	0	R/O	RAM initialized.
PDOVDD	0x00	1	R/O	Power-down event at VDD
MEMERR	0x00	2	R/O	RAM memory validation error
OVT	0x00	3	R/O	Overtemperature event
OVC2	0x00	4	R/O	Overcurrent at channel 2
OVC1	0x00	5	R/O	Overcurrent at channel 1
OSCERR	0x00	6	R/O	Oscillator error (watchdog set)
CFGTIMO	0x00	7	R/O	Configuration mode timeout event
MAPC1	0x01	0	R/O	Channel 1 current state
MONC1	0x01	1	R/O	Monitor channel 1 enabled at least once (latched)
LDASAT1	0x01	2	R/O	Channel 1 LDA saturation event
PDOVBL1	0x01	3	R/O	Power down event at VBL1 or VBL1 not equal to VBL2 in merge mode
MAPC2	0x01	4	R/O	Channel 2 current state
MONC2	0x01	5	R/O	Monitor channel 2 enabled at least once (latched)
LDASAT2	0x01	6	R/O	Channel 2 LDA saturation event
PDOVBL2	0x01	7	R/O	Power down event at VBL2 or Power down in any of VBL1 or VBL2 in merge mode

Table 74: Status overview

Register	Address	Bits	Default	Description
TEMP	0x02	7:0	R/O	Chip temperature measurement
ADC1h	0x03	1:0	R/O	Channel 1 ADC 9:8 readout
ADC1I	0x04	7:0	R/O	Channel 1 ADC 7:0 readout
ADC2h	0x05	1:0	R/O	Channel 2 ADC 9:8 readout
ADC2I	0x06	7:0	R/O	Channel 2 ADC 7:0 readout
CHIPREV	0x0F	7:0	R/O	Chip revision identification

Table 75: Measurement overview

Device identification

CHIPREV	Addr. 0x0F; bit 7:0	R
0x00 0x07	Reserved	
80x0	Initial version iC-HTP	
0x09	iC-HTP rev Z	
0x10 0xFF	Reserved	

Table 76: Device identification

PDOVDD	Addr. 0x00; bit 1 R	
0	VDD power down not occurred since last read	
1	VDD power down event has occurred. Cleared on read	

Table 78: VDD power down

MEMERR	Addr. 0x00; bit 2	R
0	RAM has not been changed since last validation	n
1	RAM has changed and has not been validated	

Table 79: Memory validation

Status

INITRAM	Addr. 0x00; bit 0	R
0	RAM not initialized since last read	
1	RAM initialized. Cleared on read	

Table 77: RAM initialization

OVT	Addr. 0x00; bit 3	R
0	No overtemperature event has occurred since la read	ast
1	Overtemperature event has occurred. Cleared or read	on

Table 80: Overtemperature

Rev A1, Page 41/46

OVC2	Addr. 0x00; bit 4	R
0	No overcurrent event at channel 2 has occurred since last read	
1	Overcurrent event at channel 2 has occurred. Cleared on read	

Table 81: Overcurrent channel 2

OVC1	Addr. 0x00; bit 5	R
0	No overcurrent event at channel 1 has occurred since last read	
1	Overcurrent event at channel 1 has occurred. Cleared on read	

Table 82: Overcurrent channel 1

OSCERR	Addr. 0x00; bit 6	R
0	Oscillator functioning OK	
1	Watchdog timeout set on oscillator failure. Cleared on read	

Table 83: Oscillator watchdog

CFGTIMO	Addr. 0x00; bit 7	R
0	iC-HT not in <i>Configuration Mode</i> or <i>Timeout</i> did n happened till now	ot
1	iC-HT in Configuration Mode and Timeout happen Laser switched off.	ed.

Table 84: Configuration timeout

MAPC1	Addr. 0x01; bit 0	R
0	EC1 is 0 at the precise reading moment	
1	EC1 is 1 at the precise reading moment	

Table 85: EC1 pin state

MONC1	Addr. 0x01; bit 1	R
0	EC1 has not been set to 1 since last read	
1	EC1 has been set to 1 at least once. Cleared or read	1

Table 86: Monitor channel 1

LDASAT1	Addr. 0x01; bit 2 R
0	Channel 1 LDA saturation voltage not reached.
1	Channel 1 LDA saturation voltage reached at least once, cleared on read

Table 87: LDA1 saturation

PDOVBL1	Addr. 0x01; bit 3 R	
0	VBL1 power down not occurred since last read. If MERGE = 1, VBL1 voltage level equals VBL2 voltage level.	
1	VBL1 power down event has occurred. If MERGE = 1, VBL1 voltage level not equals VBL2 voltage level Cleared on read	

Table 88: VBL1 power down

MAPC2	Addr. 0x01; bit 4	R
0	EC2 is 0 at the precise reading moment	
1	EC2 is 1 at the precise reading moment	

Table 89: EC2 pin state

MONC2	Addr. 0x01; bit 5	R
0	EC2 has not been set to 1 since last read	
1	EC2 has been set to 1 at least once. Cleared or read	n

Table 90: Monitor channel 2

LDASAT2	Addr. 0x01; bit 6 R
0	Channel 2 LDA saturation voltage not reached.
1	Channel 2 LDA saturation voltage reached at least once, Cleared on read

Table 91: LDA2 saturation

PDOVBL2	Addr. 0x01; bit 7	₹
0	VBL2 power down not occurred since last read. If MERGE = 1, VBL1 and VBL2 had no power down since last read.	
1	VBL2 power down event has occurred. If MERGE 1, VBL1 or VBL2 had a power down event. Cleare on read	

Table 92: VBL2 power down

Measurement registers

TEMP	Addr. 0x02; bit 7:0	R
0x00	Minimum temperature	
0xFF	Maximum temperature	

Table 93: Chip temperature

ADC1	Addr. 0x03/04; bit 9:0	R
0x000	ADC minimum value	
0x3FF	ADC maximum value	

Table 94: ADC channel 1

ADC2	Addr. 0x05/06; bit 9:0	R
0x000	ADC minimum value	
0x3FF	ADC maximum value	

Table 95: ADC channel 2

Rev A1, Page 42/46

Channel 1 configuration registers

EACC1	Addr. 0x10; bit 0	R/W 0
0	APC mode enabled for channel 1 (light regulation)	power
1	ACC mode enabled for channel 1 (lase regulation)	er current

Table 96: Enable APC/ACC channel 1

ECIE1	Addr. 0x10; bit 1	R/W 0
0	External CI capacitor for channel 1	disconnected
1	External CI capacitor for channel 1	connected

Table 97: Enable external CI capacitor channel 1

DISP1	Addr. 0x10; bit 2	R/W 0
0	PLR enabled for channel 1	
1	PLR disabled for channel 1	

Table 98: Disable PLR channel 1

DISC1	Addr. 0x10; bit 3	R/W 1
0	Channel 1 can be enabled by EC1 pin	
1	Channel 1 cannot be enabled by EC1 pin	

Table 99: Disable channel 1

EOC1	Addr. 0x10; bit 4	R/W 1
0	Channel 1 regulator offset compensation	disabled
1	Channel 1 regulator offset compensation enabled	

Table 100: Enable offset compensation channel 1

ADCC1(2:0)	Addr. 0x10;	bit 7:5	R/W 000
0xx	Channel 1 ADC disal	bled	
100	Channel 1 ADC sour	ced by V(P	LR1), ADFNS1 = 0
100	Channel 1 ADC sourced by V(MDK1), ADFNS1 = 1		
101	Channel 1 ADC sour	ced by V(V	B)
110	Channel 1 ADC sour	ced by V(V	BL1)
111	Channel 1 ADC sour	ced by V(LI	DA1)

Table 101: ADC source selection channel 1

ILIM1	Addr. 0x11; bit 7:0	R/W 0xFF
0x00	Channel 1 overcurrent threshold set current. If EACC1 = 1, then overcurr disabled	
	Channel 1 overcurrent threshold set $llim = (\Delta I(LDA), max \cdot n \cdot k)$, n from	t to 0 to 255
0xFF	Channel 1 overcurrent threshold set current	to the maximum

Table 102: Overcurrent threshold configuration channel

RMD1	Addr. 0x12; bit 7:0	R/W 0xFF
0x00	PLR1 set to the minimum resistance	
	PLR1 resistor set to $Rmd = Rmd_0(1 + \frac{\Delta Rmd(\%)}{100})^{n+1}$, n from 0 to 255	
0xFF	PLR1 resistor set to the maximum re	esistance

Table 103: MDK resistor channel 1

COMP1	Addr. 0x13; bit 6:4	R/W 011
000	Minimum compensation current for the channel 1 regulator, slower response	
111	Maximum compensation current f regulator, faster response	or the channel 1

Table 104: Current compensation channel 1

RLDAS1	Addr. 0x13; bit 3:2 R/W 00
00	V(LDA1) > VBL1-0.5 V sets the LDASAT1 alarm bit
01	V(LDA1) > VBL1-0.8 V sets the LDASAT1 alarm bit
10	V(LDA1) > VBL1-1.0 V sets the LDASAT1 alarm bit
11	V(LDA1) > VBL1-1.2 V sets the LDASAT1 alarm bit

Table 105: LDA saturation threshold selection channel 1

REF1	Addr. 0x13/14; bit 9:0	R/W 0x000
0x000	Channel 1 regulator reference voltage minimum voltage	set to
	Channel 1 regulator reference voltage $Vref = Vref_0(1 + \frac{\Delta Vref(\%)}{100})^{n+1}$, n from	set to 0 to 1023
0x3FF	Channel 1 regulator reference voltage maximum voltage	set to

Table 106: Regulator voltage reference channel 1

RACC1	Addr. 0x1A; bit 0	R/W 0
0	Current range high for channel 1	
1	Current range low for channel 1	

Table 107: Current range configuration channel 1

EXTT1	Addr. 0x1A; bit 3	R/W 0
0	External transistor driver for channel	el 1 disabled
1	External transistor driver for channel	el 1 enabled

Table 108: Enable external transistor driver 1

ADFNS1	Addr. 0x1A; bit 2	R/W 0
0	ADC measurement PLR1 after level shifting	ng (sense)
1	ADC measurement MDK1 pad (force)	

Table 109: ADC channel 1 force/sense selection

Rev A1, Page 43/46

Channel 2 configuration registers

EACC2	Addr. 0x15; bit 0	R/W 0
0	APC mode enabled for channel 2 (li regulation)	ght power
1	ACC mode enabled for channel 2 (I regulation)	aser current

Table 110: Enable APC/ACC channel 2

ECIE2	Addr. 0x15; bit 1	R/W 0
0	External CI capacitor for channel 2	disconnected
1	External CI capacitor for channel 2	connected

Table 111: Enable external CI capacitor channel 2

DISP2	Addr. 0x15; bit 2	R/W 0
0	PLR enabled for channel 2	
1	PLR disabled for channel 2	

Table 112: Disable PLR channel 2

DISC2	Addr. 0x15; bit 3	R/W 1
0	Channel 2 can be enabled by EC2 pin	
1	Channel 2 cannot be enabled by EC2 pin	

Table 113: Disable channel 2

EOC2	Addr. 0x15; bit 4 R/W 1
0	Channel 2 regulator offset compensation disabled
1	Channel 2 regulator offset compensation enabled

Table 114: Enable offset compensation channel 2

ADCC2(2:0)	Addr. 0x15;	bit 7:5	R/W 000
0xx	Channel 2 ADC disa	abled	
100	Channel 2 ADC sou	rced by V(PL	_R2), ADFNS2 = 0
100	Channel 2 ADC sou	rced by V(MI	DK2), ADFNS2 = 1
101	Channel 2 ADC sou	rced by V(VI	OD)
110	Channel 2 ADC sou	rced by V(VE	3L2)
111	Channel 2 ADC sou	rced by V(LE	DA2)

Table 115: ADC source selection channel 2

ILIM2	Addr. 0x16; bit 7:0	R/W 0xFF
0x00	Channel 2 overcurrent threshold so current. If EACC2 = 1, then overcu disabled	
	Channel 2 overcurrent threshold s $llim = (\Delta l(LDA), max \cdot n \cdot k)$, n from	et to m 0 to 255
0xFF	Channel 2 overcurrent threshold se current	et to the maximum

Table 116: Overcurrent threshold configuration channel

RMD2	Addr. 0x17; bit 7:0	R/W 0xFF
0x00	PLR2 resistor set to the minimur	
	PLR2 resistor set to Rmd = Rmd n from 0 to 255	$d_0(1+\frac{\Delta Rmd(\%)}{100})^{n+1},$
0xFF	PLR2 resistor set to the maximu	m resistance

Table 117: MDK resistor channel 2

COMP2	Addr. 0x18; bit 6:4	R/W 011
000	Minimum compensation current for the channel 2 regulator, slower response	
111	Maximum compensation current for regulator, faster response	the channel 2

Table 118: Current compensation channel 2

RLDAS2	Addr. 0x18; bit 3:2 R/W 00
00	V(LDA2) > VBL2-0.5 V sets the LDASAT2 alarm bit
01	V(LDA2) > VBL2-0.8 V sets the LDASAT2 alarm bit
10	V(LDA2) > VBL2-1.0 V sets the LDASAT2 alarm bit
11	V(LDA2) > VBL2-1.2 V sets the LDASAT2 alarm bit

Table 119: LDA saturation threshold selection channel

REF2	Addr. 0x18/19; bit 9:0 R/W 0x000	
0x000	Channel 2 regulator reference voltage set to minimum voltage	
	Channel 2 regulator reference voltage set to $Vref = Vref_0(1 + \frac{\Delta Vref(\%)}{100})^{n+1}$, n from 0 to 1023	
0x3FF	Channel 2 regulator reference voltage set to maximum voltage	

Table 120: Regulator voltage reference channel 2

RACC2	Addr. 0x1A; bit 4	R/W 0
0	Current range high for channel 2	
1	Current range low for channel 2	

Table 121: Current range configuration channel 2

EXTT2	Addr. 0x1A; bit 7	R/W 0
0	External transistor driver for channel 2 disabled	
1	External transistor driver for channel 2 enabled	

Table 122: Enable external transistor driver 2

ADFNS2	Addr. 0x1A; bit 6	R/W 0
0	ADC measurement PLR2 after level	shifting (sense)
1	ADC measurement MDK2 pad (force)	

Table 123: ADC channel 2 force/sense selection

Rev A1, Page 44/46

General configuration registers

RDCO	Addr. 0x1B; bit 5:0	R/W 0x02
0x00	No current	
0x3F	140 µA Typ (see spec point D01)	

Table 124: DCO current control

MERGE	Addr. 0x1B; bit 6	R/W 0
0	Channel 1 and 2 operate independently	
1	Power transistor from channel 2 usable in parallel with channel 1, regulation made by channel 1.	

Table 125: Channel combination

MODE(1:0)	Addr. 0x1C; bit 1:0	R/W 01
00	Not allowed	
01	Chip set in operation mode (apply configuration, latch transparent)	
10	Chip set in configuration mode (hold previous configuration)	
11	Not allowed	

Table 126: Configuration and operation mode

MOSCERR	Addr. 0x1D;	bit 0	R/W 0
0	Oscillator error (water	chdog)	will be signaled at NCHK
1	Oscillator error (watchdog) will not be signaled at NCHK		

Table 127: Oscillator watchdog error mask

MMONC	Addr. 0x1D; bit 1	R/W 1
0	MONC1 and MONC2 event will be signaled at NCHK	
1	MONC1 and MONC2 event will not be signaled at NCHK	

Table 128: Monitor channel 1 and 2 event mask

MLDASAT1	Addr. 0x1D; bit 2	R/W 1
0	LDASAT1 event will be signaled at NCHK	
1	LDASAT1 event will not be signaled at NC	HK

Table 129: LDA saturation error mask channel 1

MLDASAT2	Addr. 0x1D; bit 3	R/W 1
0	LDASAT2 event will be signaled at NCH	lK
1	LDASAT2 event will not be signaled at NCHK	

Table 130: LDA saturation error mask channel 2

SOVT	Addr. 0x1D; bit 4	R/W 0
0	No overtemperature event is simulated.	
1	Overtemperature event simulated.	

Table 131: Simulate overtemperature

SOVC1	Addr. 0x1D; bit 5	R/W 0
0	No Overcurrent event at channel 1 is simulated.	
1	Overcurrent event at channel 1 simulated.	

Table 132: Simulate overcurrent channel 1

SOVC2	Addr. 0x1D; bit 6	R/W 0
0	No overcurrent event at channel 2 is simulated.	
1	Overcurrent event at channel 2 simulated.	

Table 133: Simulate overcurrent channel 2

SOSCERR	Addr. 0x1D;	bit 7	R/W 0
0	No oscillator error simulated.		
1	Oscillator error simulated (watchdog timeout).		

Table 134: Simulate oscillator error

CRNG1(1:0)	Addr. 0x1E;	bit 1:0	R/W 00
00	Output current range	from 0 to	750 mA, RACC1 = 0
01	Output current range	from 0 to	100 mA, RACC1 = 0
10	Output current range	from 0 to 2	25 mA, RACC1 = 0
11	Output current range	from 0 to 9	9 mA, RACC1 = 0

Table 135: Current range channel 1

CRNG2(1:0)	Addr. 0x1E; bit 5:4 R/W 00
00	Output current range from 0 to 750 mA, RACC2 = 0
01	Output current range from 0 to 100 mA, RACC2 = 0
10	Output current range from 0 to 25 mA, RACC2 = 0
11	Output current range from 0 to 9 mA, RACC2 = 0

Table 136: Current range channel 2

Rev A1, Page 45/46

SETTING THE LIGHT POWER

In order to start the light power setting with low power at laser, RMDx(7:0) = 0xFF and REFx(9:0) = 0x000 must be set. When working in microcontroller mode, the calibration shall be done in two different steps. First, adjust the current monitor value (RMDx(7:0) registers) until 90% of the desired light power value has been achieved. Using that registers, monitor current steps will be typical 3.3% (using logarithmic distribution with

constant percentage increase between steps). Second, after reaching 90% of desired regulation level, for the remaining 10%, start with the fine adjustment using REFx(9:0) registers. Using that registers, monitor current steps will be typically 0.235% (using logarithmic distribution with constant percentage increase between steps).

REVISION HISTORY

Rel.	Rel. Date	Chapter	Modification	Page
A1	2015-06-19		Initial release	all

iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.com/infoletter; this letter is generated automatically and shall be sent to registered users by

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these

The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Rev A1, Page 46/46

ORDERING INFORMATION

Туре	Package	Order Designation
iC-HTP	QFN28 5 mm x 5 mm	iC-HTP QFN28-5x5
Evaluation Board	100 mm x 80 mm eval board	iC-HTP EVAL HTP1D

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Tel.: +49 (0) 61 35 - 92 92 - 0 Am Kuemmerling 18 Fax: +49 (0) 61 35 - 92 92 - 192 D-55294 Bodenheim Web: http://www.ichaus.com **GERMANY** E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners